CONDITIONS FOR GENERATING
A NONVANISHING BOUNDED ANALYTIC FUNCTION

J. H. MANTEL

Abstract. B. A. Taylor and L. A. Rubel have posed the problem of finding necessary and sufficient conditions on a set of given functions \(f_1, f_2, \ldots, f_n \) in \(H^\infty \) such that there exist functions \(g_1, g_2, \ldots, g_n \) in \(H^\infty \) with \(\sum_{i=1}^{n} f_i g_i \neq 0 \) in the open unit disc. L. A. Rubel has conjectured that a necessary and sufficient condition is that there exist a harmonic minorant of \(\log |\sum_{i=1}^{n} |f_i|| \) in the open unit disc. The major result of this paper proves that the conjecture is true if one of the given functions \(f_1, f_2, \ldots, f_n \) has a zero set which is an interpolation set for \(H^\infty \).

Let \(D \) be the open unit disc in the complex plane and let \(H^\infty \) denote the space of bounded holomorphic functions on \(D \). If \(f_1, f_2, \ldots, f_n \) are \(n \) given functions in \(H^\infty \), we seek necessary and sufficient conditions that there are functions \(g_1, g_2, \ldots, g_n \) in \(H^\infty \) with

\[
\sum f_i(z) g_i(z) \neq 0, \quad z \in D. \tag{1}
\]

If it happens that \(|\sum f_i g_i| \) is actually bounded away from zero on \(D \), then \(f_1, f_2, \ldots, f_n \) generate \(H^\infty \) (as an ideal); it is a known and difficult theorem of L. Carleson that \(f_1, f_2, \ldots, f_n \) generate \(H^\infty \) if and only if

\[
\sum |f_i(z)| > \delta > 0, \quad z \in D \tag{2}
\]

(see [2, p. 163]). Since we ask here for only the weaker condition that \(\sum f_i g_i \) does not vanish in \(D \), it is to be expected that (2) will be replaced by some weaker condition. L. A. Rubel has conjectured that (1) holds for some \(g_1, g_2, \ldots, g_n \) if and only if the function

\[
\mu(z) = \log \sum |f_i(z)| \tag{3}
\]

has a harmonic minorant on \(D \). We show in what follows that this conjecture is true under the additional hypothesis that the zero set of some \(f_j \) is an interpolation sequence for \(H^\infty \).

A sequence of points \(\{z_k\}_{k=1}^{\infty} \) in \(D \) is called an interpolation sequence for \(H^\infty \) if, for each bounded sequence of complex numbers \(\{w_k\}_{k=1}^{\infty} \), there exists a function \(f \) in \(H^\infty \) such that \(f(z_k) = w_k \) for every \(k \). A Blaschke product is an

Received by the editors March 10, 1977.

AMS (MOS) subject classifications (1970). Primary 30A76, 30A78, 30A82; Secondary 30A08.

Key words and phrases. Blaschke product, \(H^\infty \), interpolation sequence for \(H^\infty \), harmonic minorant, zero set, generating a nonvanishing bounded analytic function.

\(^1\)All summations will be indexed from \(i = 1 \) to \(i = n \) unless otherwise indicated.

\(^2\)Private communications.

© American Mathematical Society 1977
analytic function B of the form

$$B(z) = z^n \prod_{k=1}^{\infty} \left[\frac{\alpha_k \cdot (\alpha_k - z)}{|\alpha_k| \cdot (1 - \alpha_k z)} \right]^{p_k}$$

where

(i) p, p_1, p_2, \ldots are nonnegative integers;
(ii) the α_k are distinct nonzero numbers in D;
(iii) the product $\prod_{k=1}^{\infty} |\alpha_k|^{p_k}$ is convergent.

For further discussion on interpolation sequences and Blaschke products, see [2, pp. 66–74, 194–207] and [1, pp. 18–29, 136–143].

Suppose $\Sigma f_i g_i \neq 0$ in D where the f_i's and g_i's are in H^∞. Then $\Sigma f_i g_i = e^h$ where h is analytic in D.

Consequently, $e^{Re h} < c \Sigma |f_i|$ and so $Re h - \log c < \log \Sigma |f_i|$ and $Re h - \log c$ is harmonic. This shows that the condition that $\log \Sigma |f_i|$ have a harmonic minorant is necessary. It is clearly sufficient for the case $n = 1$. For $n > 2$, suppose the zero set of some f_i is finite. If $\mu(z)$ has a harmonic minorant, then the zero sets of f_1, f_2, \ldots, f_n are mutually disjoint. Since the only possible limit points of the zero sets lie on the unit circle, there exists an open set V containing the zero set of f_i such that $|f_i(z)| > \delta_1 > 0$ outside V and $\Sigma_{k \neq j} |f_k| > \delta_2 > 0$ on V. Consequently, $\Sigma |f_i| > \delta > 0$ on the open disc, and by the result of L. Carleson cited above, f_1, f_2, \ldots, f_n generate H^∞. Hence we now restrict our attention to the case where $n > 2$ and the zero sets of the f_i's are all infinite.

Theorem. Given f_1, f_2, \ldots, f_n in H^∞ with the zero set of f_1 an interpolation sequence for H^∞, there exist functions g_1, g_2, \ldots, g_n in H^∞ with $\Sigma f_i g_i \neq 0$ in D if and only if $\log \Sigma |f_i|$ has a harmonic minorant.

We need a preliminary result:

Lemma. Let B be a Blaschke product whose zero set $\{z_k\}_{k=1}^{\infty}$ is an interpolation sequence for H^∞. Let f_1, f_2, \ldots, f_n be functions in H^∞. Then $I_1 = I_2$ where

$$I_1 = \{ Bg_0 + \sum f_i g_i: g_0, g_1, g_2, \ldots, g_n \text{ are in } H^\infty \}$$

and

$$I_2 = \{ g \in H^\infty: |g(z_k)|\left(\sum |f_i(z_k)|\right)^{-1} < M \text{ for all } k \text{ where } M \text{ depends on } g \}.$$

Proof of Lemma. Let $F = Bg_0 + \sum f_i g_i$ lie in I_1. Then

$$|B(z_k)g_0(z_k) + \sum f_i(z_k)g_i(z_k)|\left(\sum |f_i(z_k)|\right)^{-1} = \left|\sum f_i(z_k)g_i(z_k)\left(\sum |f_i(z_k)|\right)^{-1}\right| < \|g\|_\infty$$

for all k. Hence $I_1 \subset I_2$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Now suppose \(g \in I_2 \). For \(i = 1, 2, \ldots, n \) and \(k = 1, 2, 3, \ldots \), define \(\alpha_{ik} \) by

\[
\alpha_{ik} = \begin{cases}
0 & \text{if } f_i(z_k) = 0, \\
\text{sgn } f_i(z_k) & \text{if } f_i(z_k) \neq 0.
\end{cases}
\]

Then \(\{\alpha_{ik}\}_{k=1}^\infty \in l^\infty \) for \(i = 1, 2, \ldots, n \). Since \(\{z_k\}_{k=1}^\infty \) is interpolating, there exist \(g_1, g_2, \ldots, g_n \) in \(H^\infty \) such that \(g_i(z_k) = \alpha_{ik} \) for \(i = 1, 2, \ldots, n \) and \(k = 1, 2, 3, \ldots \). Consequently,

\[
|g(z_k)\left(\sum f_i(z_k)g_i(z_k)\right)^{-1}| = |g(z_k)|\left(\sum |f_i(z_k)|\right)^{-1} \leq M
\]

for all \(k \). So \(\{g(z_k)(\sum f_i(z_k)g_i(z_k))^{-1}\}_{k=1}^\infty \in l^\infty \), and there exists \(h \in H^\infty \) such that

\[
h(z_k) = g(z_k)\left(\sum f_i(z_k)g_i(z_k)\right)^{-1}
\]

for every \(k \). We have that \(g - h\sum f_ig_i = 0 \) on \(\{z_k\}_{k=1}^\infty \) which implies that \(g - h\sum f_ig_i = Bh_1 \), where \(h_1 \in H^\infty \). Thus \(g = Bh_1 + \sum f_ig_ih \) and so \(g \in I_1 \). This shows that \(I_2 \subset I_1 \), and the proof is complete.

Proof of Theorem. Let \(B_1 \) be the Blaschke factor of \(f_1 \). Suppose \(\log |S|f_i| \) has harmonic minorant \(\mu \). Let \(v \) be a harmonic conjugate of \(\mu \). Then \(\Sigma |f_i| > e^\mu = |e^{\mu+i\nu}| \) and thus \(e^{\mu+i\nu} \in H^\infty \). Let \(h = \mu + iv \) and let \(\{z_k\}_{k=1}^\infty \) be the zero set of \(B_1 \). Then \(|e^{h(z_k)}(\Sigma |f_i(z_k)|)|^{-1} \leq 1 \) for all \(k \). By the Lemma, there exist functions \(g_0, g_1, \ldots, g_n \) in \(H^\infty \) such that \(B_0g_0 + \sum f_ig_i = e^h \). Now \(f_0 = B_1G_1 \), where \(G_1 \in H^\infty \) and \(G_1 \neq 0 \) in \(D \). Hence \(B_1G_1g_0 + \sum f_ig_iG_1 = G_1e^h \), and the proof is complete.

The condition in the Theorem that \(\{z_k\}_{k=1}^\infty \) be an interpolation sequence can be weakened so that \(\{z_k\}_{k=1}^\infty \) is the union of a finite number of interpolation sequences. The argument is by induction on the number of interpolation sequences and is straightforward. P. J. McKenna has announced the following related result: Let \(S = \{z_n\} \) be a sequence of points in the open unit disc satisfying the Blaschke condition. Let \(\mu \) be the discrete measure concentrated on the sequence \(S \), with weights \(\mu(\{z_n\}) = 1 - |z_n|^2 \), \(n = 1, 2, 3, \ldots \). Then \(\mu \) is a Carleson measure if and only if \(S \) is a finite union of interpolating sequences.

References

Unity Mutual Life Insurance Company, 4969 Onondaga Road, Syracuse, New York 13215

Current address: 2111 Cromwell Hills Drive, Cromwell, Connecticut 06416