THE HYPERBOLICITY OF THE COMPLEMENT OF $2n + 1$
HYPERPLANES IN GENERAL POSITION IN \mathbb{P}^n, AND
RELATED RESULTS

MARK L. GREEN

Abstract. Using a modified version of a technique of R. Brody, a simple
proof is found that the complement of $2n + 1$ hyperplanes in general
position in \mathbb{P}^n is complete hyperbolic and hyperbolically embedded in \mathbb{P}^n. In
fact, a more general result is obtained showing that a suitable Picard
theorem is sufficient to imply hyperbolicity in a large class of algebro-geo-
metric situations.

1. Introduction. Our main theorem, first proved by A. Bloch [1] (see also [3])
in 1926, is the following:

Theorem 1. The complement of $2n + 1$ hyperplanes in general position in \mathbb{P}^n
is complete hyperbolic and hyperbolically embedded in \mathbb{P}^n.

(For the meaning of these terms, see [6] and [9].)

Bloch's proof is exceedingly complex, and there has been considerable
interest in finding a simpler argument. A differential-geometric argument of
M. Cowen [4] gives a nice proof for $n = 2$, but breaks down for higher n. The
method of proof here will be a noncompact version of a simple but fertile
technique introduced by R. Brody [2]. A similar proof has been found
independently by A. Howard.

We will obtain the more general result:

Theorem 2. Let D be a union of (possibly singular) hypersurfaces
D_1, \ldots, D_m in a compact complex manifold V. Then $V - D$ is complete
hyperbolic and hyperbolically embedded in V provided

1. there are no nonconstant holomorphic maps $C \to V - D$, and
2. there are no nonconstant holomorphic maps $C \to D_{i_1} \cap \cdots \cap D_{i_k} - (D_{j_1}
\cup \cdots \cup D_{j_l})$, for any choice of distinct indices so $\{i_1, \ldots, i_k, j_1, \ldots, j_l\} =
\{1, \ldots, m\}$.

Received by the editors June 11, 1976 and, in revised form, September 10, 1976, November 23,

Key words and phrases. Hyperbolic manifold, holomorphic curve, value distribution theory,
Picard theorem, hyperplanes in general position, complex projective spaces.

The author gratefully acknowledges support of the N.S.F.

© American Mathematical Society 1977

109
In fact, we need only assume there are no nonconstant holomorphic maps of finite order \(< 2\) in (1) and (2).

(For the meaning of finite order, see [7].)
Some applications of Theorem 2 other than \(\mathbb{P}^n\) minus hyperplanes will be discussed in §4.

2. Brody's reparametrization lemma. Let \(M\) be a complex manifold, possibly with boundary. Let \(H\) be a continuous differential metric, i.e. a continuous function \(|\varphi|_H\) on the tangent bundle of \(M\) satisfying \(|\alpha \varphi_x| = |\alpha| \varphi_x|_H\) for all \(\alpha \in \mathbb{C}, \varphi_x \in T_x(M)\). Let \(\Delta(r)\) be the disc of radius \(r\) and
\[
\eta_r(z) = \frac{r^2}{(r^2 - |z|^2)}.
\]

Brody's Reparametrization Lemma. Let \(\Delta(r) \to^f M\) be holomorphic, with \(|df(0)|_H > c\). Then there exists \(\Delta(r) \to^g M\) holomorphic so
\[
\begin{align*}
(1) \quad &|g(0)| = c, \\
(2) \quad &|dg(z)|_H/\eta_r(z) < c, \text{ all } z \in \Delta(r), \\
(3) \quad &\text{Image}(g) \subset \text{Image}(f).
\end{align*}
\]

Proof. Let \(\Delta(r) \to^f M\) be given by \(f_t(z) = f(tz)\). Then
\[
\frac{|df_t(z)|_H}{\eta_r(z)} = t \frac{r^2 - |z|^2}{r^2 - |tz|^2} \cdot \frac{|df_k(tz)|_H}{\eta_r(tz)}.
\]

If \(u(t) = \sup_{z \in \Delta(r)} |df_t(z)|_H/\eta_r(z)\), then:
\[
(1) \quad u(t) \text{ is finite, monotone increasing, and continuous on } [0, 1),
(2) \quad c < u(1) < \infty.\text{Thus, for suitable } t \in [0, 1), \text{ we have } u(t) = c. \text{ The maximum occurs at a point } z_0 \in \Delta(r), \text{ and if } h(z) = (z - z_0)/(1 - \bar{z}z_0), \text{ we have}
\]
\[
|d(f_t \circ h)(z)|_H/\eta_r(z) = |df_t(h(z))|_H/\eta_r(h(z))
\]
by invariance of the Poincaré metric. Taking \(g = f_t \circ h\) this gives the desired reparametrization.

3. Proofs of Theorems 1 and 2. Let \(V\) be a compact complex manifold, \(D\) a hypersurface with irreducible components \(D_1, \ldots, D_m\), satisfying the hypotheses of Theorem 2. Choose a hermitian metric \(H\) on \(V\). Cover \(V\) by open polydiscs \(U_1, \ldots, U_N\), and choose an \(\epsilon > 0\) so that for any \(p \in V\), the \(H\)-ball of radius \(\epsilon\) in \(V\) lies inside one of these polydiscs. Further choose the \(U_i\) small enough that for all \(p \in V\), the union of all \(U_i\) containing \(p\) is contained in a polydisc.

Let \(K_S\) denote, in general, the infinitesimal Kobayashi metric (see [8]) on a set \(S\). The metric \(K_{U_j - D_j}\) is complete, as it dominates \(K_{U_j}\) and hence is complete for \(\partial U_j\), while as \(U_j\) is Stein, there is a holomorphic defining function \(a_j\) for \(D_j\) in \(U_j\) so \(U_j - D_j \to a_j(K_{\Delta^*})\), so \(K_{U_j - D_j} \supset \alpha_j(K_{\Delta^*})\), so \(K_{U_j - D_j}\) is complete as we approach \(D_j\). It is automatically upper-semicontinuous (see [8]), and lower-semicontinuity follows from completeness and the fact that
Let G_i be the differential metric on $V - D_i$ defined by

$$G_i = \min_{j=1, \ldots, N} K_{U_j - D_i},$$

where for each $p \in V - D_i$, the minimum is taken over those j so $p \in U_j$. The metric G_i is continuous as each $K_{U_j - D_i} \supset K_{U_j}$ and thus blows up on ∂U_j. It is complete, as at $p \in V$, G_i dominates $K_{U_j - D_i}$, where U is the polycylinder postulated in our choice of covering to contain the union of those U_i containing p. Take $G_0 = \max_{i=1, \ldots, m} G_i$ and finally set

$$G = \max(G, (\varepsilon/3)G_0).$$

Thus, if the infinitesimal Kobayashi pseudo-distance on $V - D$ dominates some nonzero multiple of G, we are done, as G is complete and $G \geq H$. If not, then there exists a $c > 0$ and a family of holomorphic maps

$$A(r_i) \to V - D, \quad r_i \to \infty,$$

with $|df_i(0)| \geq c$. By Brody's lemma, we can reparametrize to obtain a family $A(r_i) \to V - D$ with $|dg_i(0)| = c$ and $|dg_i(z)|/n_i(z) < c$, all $z \in \Delta(r_i)$. Note $|dg_i(z)| \leq 4c/3$ if $z \in \Delta(r_i/2)$. The family g_i is equicontinuous (as $G \geq H$) and has a subsequence converging to a holomorphic map $C \to V$. Take this subsequence and reindex.

If $g(z) \not\in D$ for some $z \in C$, then by the distance-decreasing property of the g_i and the completeness of the metric G, we have $C \to V - D$. As $|dg(0)|_G = c$, the map is nonconstant, and as $|dg_i(z)|_G \leq c$ for all $z \in C$ (as $\lim_{r_i \to \infty} n_i(\tau_i) = 1$), g is of finite order < 2. Otherwise, $C \to D$. If D has several components D_1, \ldots, D_m, the preceding argument may be applied as $G \geq G_i$ and G_i is complete to show that either $g(C) \cap D_i = \emptyset$ or $g(C) \subset D_i$. So

$$C \to D_{i_1} \cap \cdots \cap D_{i_k} \setminus (D_{j_1} \cup \cdots \cup D_{j_l})$$

where $\{i_1, \ldots, i_k, j_1, \ldots, j_l\} = \{1, \ldots, m\}$.

The main thing is to see that g is nonconstant. By the distance-decreasing property of the g_i, we have for any $\rho \in (0, r_i/2)$ that $g_i(\Delta(\rho)) \subset B_{(4/3)(\rho c)}(g_i(0))$, where B_τ denotes, in general, the H-ball of radius τ. For i sufficiently large, we therefore have $g_i(\Delta(\rho)) \subset B_{(3/2)(\rho c)}(g(0))$.

If we take $\rho = 2\varepsilon/3c$, then $g_i(\Delta(\rho)) \subset B_{c}(g(0))$, and hence lies in some U_j. So $\Delta(\rho) \to U_j - D$ and thus

$$|dg_i(0)|_{K_{U_j - D}} \leq 1/\rho = 3c/2\varepsilon,$$

so

$$(2\varepsilon/3)|dg_i(0)|_{K_{U_j - D}} \leq c = |dg_i(0)|_G.$$

Now

$$|dg_i(0)|_G = \max(|dg_i(0)|_H, (\varepsilon/3)|dg_i(0)|_{G_0})$$

and
\[G_0 < \min_{j=1, \ldots, N} K_{U_j - D} \]
as \(K_{U_j - D} \leq K_{U_j - D} \) all \(i = 1, \ldots, m \). Hence
\[|d g_i(0)|_{g_0} < |d g_i(0)|_{K_{U_j - D}} \]
so
\[(\varepsilon/3)|d g_i(0)|_{g_0} < c/2 = (-1/2)^{\mu} \]
If \(|d g_i(0)|_{G} = (\varepsilon/3)|d g_i(0)|_{g_0} \) we would have a contradiction, so as \(G = \max(H, (\varepsilon/3) G_0) \) we have \(c = |d g_i(0)|_{G} = |d g_i(0)|_{H} \). Passing to the limit, \(|d g(0)|_{H} = c \) and therefore \(g \) is nonconstant.
We thus obtain a nonconstant map \(g \) from \(C \) to either \(V - D \) or a set of the form \(D_{i_1} \cap \cdots \cap D_{i_k} \) if \(D_{i_1} \cup \cdots \cup D_{i_k} \), \(\{i_1, \ldots, i_k, j_1, \ldots, j_l\} = \{1, \ldots, m\} \). Further, \(|d g(z)|_{H} < c \), hence \(g \) is of finite order < 2. Under the hypotheses of Theorem 2, this cannot occur, and hence the infinitesimal Kobayashi metric on \(V - D \) dominates a multiple of \(G \), which proves the result.
If \(V = \mathbb{P}^n, D = H_1 \cup \cdots \cup H_{2n+1} \), the \(H_i \) in general position, it follows that \(V \) and \(D \) satisfy the hypotheses of Theorem 2 by a classical result of E. Borel (see [5]) and the observation that \(H_{i_1} \cap \cdots \cap H_{i_k} \cup (H_{j_1} \cup \cdots \cup H_{j_l}), \{i_1, \ldots, i_k, j_1, \ldots, j_l\} = \{1, 2, \ldots, 2n+1\} \) is \(\mathbb{P}^n - k \) minus \(2n + 1 - k \) > 2(n - k) + 1 hyperplanes in general position. We use only the Borel result for finite order maps, i.e., exponentials of polynomials, and it is easy in this case.

4. Further results. A consequence of Theorem 2 is

Corollary. Let \(D \) be an algebraic curve of degree > 5 and genus > 2 in \(\mathbb{P}^2 \). Then \(\mathbb{P}^2 - D \) is complete hyperbolic and hyperbolically embedded in \(\mathbb{P}^2 \leftrightarrow \) there exists no nonconstant holomorphic map \(C \rightarrow \mathbb{P}^2 - D \) of finite order < 2.

Thus, proving hyperbolicity is reduced to proving a Picard theorem. A slight modification of the argument gives the corollary for any \(D \) of degree > 5 with only ordinary double points.
A case where we can say more is \(D = Q \cup L_1 \cup L_2 \cup L_3 \) where \(Q \) is a nonsingular conic and \(L_1, L_2, L_3 \) are three lines in general position. We further assume the lines are not tangent to \(Q \) and no two of the lines intersect on \(Q \), and that the tangents to \(Q \) at an intersection with one of the lines does not pass through the intersection of the other two lines. If \(C \rightarrow \mathbb{P} - D \), then lifting \(f \) to \(\mathbb{C}^3 \) and composing with the homogeneous polynomials defining \(L_1, L_2, L_3, Q \) and so labelled, we can arrange
\[L_i(f) = e^{\xi_i}, \quad i = 1, 2, 3, \quad Q(f) = 1. \]
Now
\[Q = \sum_{i<j} A_{ij} L_i L_j \quad \text{so} \quad \sum_{i<j} A_{ij} e^{\xi_i + \xi_j} = 1. \]
Now by E. Borel's lemma on linear combinations of exponentials (see [5])
$e^{\pi i} + \theta = \text{constant, some } i, j$. Thus, $L_i(f)L_j(f) = cQ(f)$, some constant c.

Thus $f(C)$ lies in a conic or a line. But any conic meets $Q \cup L_1 \cup L_2 \cup L_3$ in at least 3 distinct points, hence f is constant by Picard’s theorem. The only way a line M can meet $Q \cup L_1 \cup L_2 \cup L_3$ is less than 3 points is if we have the configuration

\[\{i, j, k\} = \{1, 2, 3\}\]

This was excluded, so again f must be constant. Thus

Corollary. The complement of a generic configuration of a conic and three lines in \mathbb{P}_2 is complete hyperbolic and hyperbolically embedded in \mathbb{P}_2.

By generic configuration is meant a Zariski open subset of the set of conics and three lines in \mathbb{P}_2. The forbidden configurations were listed earlier in this section.

References