Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The hyperbolicity of the complement of $ 2n+1$ hyperplanes in general position in $ P\sb{n}$ and related results

Author: Mark L. Green
Journal: Proc. Amer. Math. Soc. 66 (1977), 109-113
MSC: Primary 32H20
MathSciNet review: 0457790
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Using a modified version of a technique of R. Brody, a simple proof is found that the complement of 2n + 1 hyperplanes in general position in $ {{\mathbf{P}}_n}$ is complete hyperbolic and hyperbolically embedded in $ {{\mathbf{P}}_n}$. In fact, a more general result is obtained showing that a suitable Picard theorem is sufficient to imply hyperbolicity in a large class of algebro-geometric situations.

References [Enhancements On Off] (What's this?)

  • [1] A. Bloch, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires, Ann. Sci. École Norm. Sup. (3) 43 (1926), 309–362 (French). MR 1509274
  • [2] R. Brody, Intrinsic metrics and measures on compact complex manifolds, Thesis, Harvard Univ., Cambridge, Mass.
  • [3] Henri Cartan, Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires et leurs applications, Ann. Sci. École Norm. Sup. (3) 45 (1928), 255–346 (French). MR 1509288
  • [4] Michael Cowen, The Kobayashi metric on 𝑃_{𝑛}-(2ⁿ+1) hyperplanes, Value distribution theory, Part A (Proc. Tulane Univ. Program, Tulane Univ., New Orleans, La., 1972-1973) Dekker, New York, 1974, pp. 205–223. MR 0352543
  • [5] Mark Lee Green, Some Picard theorems for holomorphic maps to algebraic varieties, Amer. J. Math. 97 (1975), 43–75. MR 0367302,
  • [6] Shoshichi Kobayashi, Hyperbolic manifolds and holomorphic mappings, Pure and Applied Mathematics, vol. 2, Marcel Dekker, Inc., New York, 1970. MR 0277770
  • [7] Rolf Nevanlinna, Analytic functions, Translated from the second German edition by Phillip Emig. Die Grundlehren der mathematischen Wissenschaften, Band 162, Springer-Verlag, New York-Berlin, 1970. MR 0279280
  • [8] H. L. Royden, Remarks on the Kobayashi metric, Several complex variables, II (Proc. Internat. Conf., Univ. Maryland, College Park, Md., 1970) Springer, Berlin, 1971, pp. 125–137. Lecture Notes in Math., Vol. 185. MR 0304694
  • [9] Shoshichi Kobayashi and Peter Kiernan, Holomorphic mappings into projective space with lacunary hyperplanes, Nagoya Math. J. 50 (1973), 199–216. MR 0326007

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 32H20

Retrieve articles in all journals with MSC: 32H20

Additional Information

Keywords: Hyperbolic manifold, holomorphic curve, value distribution theory, Picard theorem, hyperplanes in general position, complex projective spaces
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society