Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Extension of invariant linear functionals


Author: Ky Fan
Journal: Proc. Amer. Math. Soc. 66 (1977), 23-29
MSC: Primary 46A30; Secondary 47D05
MathSciNet review: 0458111
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In a recent paper [4] we considered a semigroup of linear contractions or a group of linear isometries in a normed vector space, and obtained sufficient conditions for the orbits to lie on parallel closed hyperplanes. In the present note, we take a more general viewpoint and shall prove some theorems on extension of continuous linear functionals which are invariant under a group or a semigroup of continuous linear maps on a locally convex topological vector space. These more general results include those in [4] as direct consequences.


References [Enhancements On Off] (What's this?)

  • [1] N. Bourbaki, Eléments de mathématique. XVIII. Première partie: Les structures fondamentales de l’analyse. Livre V: Espaces vectoriels topologiques. Chapitre III: Espaces d’applications linéaires continues. Chapitre IV: La dualité dans les espaces vectoriels topologiques. Chapitre V: Espaces hilbertiens, Actualités Sci. Ind., no. 1229, Hermann & Cie, Paris, 1955 (French). MR 0077882
  • [2] Jacques Dixmier, Les moyennes invariantes dans les semi-groups et leurs applications, Acta Sci. Math. Szeged 12 (1950), no. Leopoldo Fejer et Frederico Riesz LXX annos natis dedicatus, Pars A, 213–227 (French). MR 0037470
  • [3] Nelson Dunford and Jacob T. Schwartz, Linear operators. Part I, Wiley Classics Library, John Wiley & Sons, Inc., New York, 1988. General theory; With the assistance of William G. Bade and Robert G. Bartle; Reprint of the 1958 original; A Wiley-Interscience Publication. MR 1009162
  • [4] Ky Fan, Orbits of semi-groups of contractions and groups of isometries, Abh. Math. Sem. Univ. Hamburg 45 (1976), 245–250. MR 0410470
  • [5] Shizuo Kakutani, Two fixed-point theorems concerning bicompact convex sets, Proc. Imp. Acad. 14 (1938), no. 7, 242–245. MR 1568507
  • [6] Gottfried Köthe, Topologische lineare Räume. I, Die Grundlehren der mathematischen Wissenschaften, Bd. 107, Springer-Verlag, Berlin-Göttingen-Heidelberg, 1960 (German). MR 0130551
  • [7] M. G. Kreĭn and M. A. Rutman, Linear operators leaving invariant a cone in a Banach space, Uspehi Matem. Nauk (N. S.) 3 (1948), no. 1(23), 3–95 (Russian). MR 0027128
  • [8] I. Namioka and E. Asplund, A geometric proof of Ryll-Nardzewski’s fixed point theorem, Bull. Amer. Math. Soc. 73 (1967), 443–445. MR 0209904, 10.1090/S0002-9904-1967-11779-8
  • [9] Czesław Ryll-Nardzewski, On fixed points of semigroups of endomorphisms of linear spaces, Proc. Fifth Berkeley Sympos. Math. Statist. and Probability (Berkeley, Calif., 1965/66) Univ. California Press, Berkeley, Calif., 1967, pp. 55–61. MR 0215134
  • [10] Helmut H. Schaefer, Topological vector spaces, Springer-Verlag, New York-Berlin, 1971. Third printing corrected; Graduate Texts in Mathematics, Vol. 3. MR 0342978

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46A30, 47D05

Retrieve articles in all journals with MSC: 46A30, 47D05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0458111-8
Article copyright: © Copyright 1977 American Mathematical Society