Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On the existence of $ \omega $-points


Author: Andrzej Szymański
Journal: Proc. Amer. Math. Soc. 66 (1977), 128-130
MSC: Primary 54G99
DOI: https://doi.org/10.1090/S0002-9939-1977-0458395-6
MathSciNet review: 0458395
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Without additional axioms to ZFC it is shown that each point of a dense-in-itself Hausdorff space in which nonempty $ {G_\delta }$'s have nonempty interiors is an $ \omega $-point.


References [Enhancements On Off] (What's this?)

  • [1] D. Booth, Ultrafilters on a countable set, Ann. Math. Logic 2 (1970), 1-24. MR 0277371 (43:3104)
  • [2] W. W. Comfort and N. Hindman, Refining families for ultrafilters, Math. Z. 149 (1976), 189-199. MR 0429573 (55:2585)
  • [3] W. W. Comfort and S. Negrepontis, The theory of ultrafilters, Grundlehren Math. Wiss., Bd. 211, Springer-Verlag, Berlin, 1974. MR 0396267 (53:135)
  • [4] E. van Douwen, Martin's axiom and pathological points in $ \beta X - X$ (preprint).
  • [5] N. Hindman, On the existence of c-points in $ \beta N - N$, Proc. Amer. Math. Soc. 21 (1969), 227-280. MR 0239565 (39:922)
  • [6] K. Kunen and F. D. Tall, Between Martin's axiom and Souslin's hypothesis (preprint).
  • [7] K. Kuratowski and A. Mostowski, Set theory, North-Holland, Amsterdam; PWN, Warsaw, 1967.
  • [8] K. Prikry, Ultrafilters and almost disjoint sets, Bull. Amer. Math. Soc. 81 (1975), 209-212. MR 0416927 (54:4989b)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54G99

Retrieve articles in all journals with MSC: 54G99


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0458395-6
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society