Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

When is the free product of lattices complete?


Authors: George Grätzer and David Kelly
Journal: Proc. Amer. Math. Soc. 66 (1977), 6-8
MSC: Primary 06A23
DOI: https://doi.org/10.1090/S0002-9939-1977-0460199-5
MathSciNet review: 0460199
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Yu. I. Sorkin proved that, up to isomorphism, there are three finite lattices that can be represented as a free product of two lattices. In this note we prove that, up to isomorphism, there are five complete lattices that can be so represented.


References [Enhancements On Off] (What's this?)

  • [1] G. Grätzer, General lattice theory, Akademie Verlag, Academic Press, Birkhäuser Verlag (to appear).
  • [2] G. Grätzer, H. Lakser and C. R. Platt, Free products of lattices, Fund. Math. 69 (1970), 233-240. MR 0274351 (43:116)
  • [3] B. Jónsson, Sublattices of a free lattice, Canad. J. Math. 13 (1961), 256-264. MR 0123493 (23:A818)
  • [4] H. L. Rolf, The free lattice generated by a set of chains, Pacific J. Math. 8 (1958), 585-595. MR 0103843 (21:2606)
  • [5] Yu. I. Sorkin, Free unions of lattices, Mat. Sb. N.S. 30 (72) (1952), 677-694. (Russian) MR 0047605 (13:901c)
  • [6] Ph. M. Whitman, Free lattices, Ann. of Math. (2) 42 (1941), 325-330; II (2) 43 (1942), 104-115. MR 0003614 (2:244f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 06A23

Retrieve articles in all journals with MSC: 06A23


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0460199-5
Keywords: Lattice, free product, complete
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society