Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)

 

The Ising model limit of $ \phi \sp{4}$ lattice fields


Author: Jay Rosen
Journal: Proc. Amer. Math. Soc. 66 (1977), 114-118
MSC: Primary 82.60
MathSciNet review: 0469019
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the $ \lambda \to \infty $ limit of $ \lambda {\phi ^4}$ lattice fields is an Ising model.


References [Enhancements On Off] (What's this?)

  • [1] K. Wilson and J. Kogut, The renormalization group and the $ \varepsilon $ expansion, Phys. Rep. 12C (1974), 75.
  • [2] E. Brezin, J. C. LeGuilloui and J. Zinn-Justin, Field theoretical approach to critical phenomena, Phase Transitions and Critical Phenomena, Vol. VI, Academic Press, New York.
  • [3] D. Isaacson, The critical behavior of the anharmonic oscillator, Rutgers Univ. preprint, 1976.
  • [4] James Glimm and Arthur Jaffe, Critical problems in quantum fields, Les méthodes mathématiques de la théorie quantique des champs (Colloq. Internat. CNRS, No. 248, Marseille, 1975) Éditions Centre Nat. Recherche Sci., Paris, 1976, pp. 157–173 (English, with French summary). MR 0479186 (57 #18633)
  • [5] Barry Simon and Robert B. Griffiths, The (𝜑⁴)₂ field theory as a classical Ising model, Comm. Math. Phys. 33 (1973), 145–164. MR 0428998 (55 #2018)
  • [6] F. Spitzer, Random fields and interacting particle systems, Mathematical Association of America, Washington, D.C., 1971. Notes on lectures given at the 1971 MAA Summer Seminar, Williams College, Williamstown, Mass. MR 0381041 (52 #1938)
  • [7] O. E. Lanford III and D. Ruelle, Observables at infinity and states with short range correlations in statistical mechanics, Comm. Math. Phys. 13 (1969), 194–215. MR 0256687 (41 #1343)
  • [8] R. Dobrushin, The description of a random field by means of conditional probabilities, Theor. Probability Appl. 13 (1968), 197-224.
  • [9] David Ruelle, Statistical mechanics: Rigorous results, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR 0289084 (44 #6279)
  • [10] A. Messager and S. Miracle-Sole, Equilibrium states of the two-dimensional Ising model in the two-phase region, Comm. Math. Phys. 40 (1975), 187–196. MR 0368676 (51 #4917)
  • [11] P. Billingsly, Convergence of probability measures, Wiley, New York, 1968.
  • [12] Barry Simon, The 𝑃(𝜑)₂ Euclidean (quantum) field theory, Princeton University Press, Princeton, N.J., 1974. Princeton Series in Physics. MR 0489552 (58 #8968)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 82.60

Retrieve articles in all journals with MSC: 82.60


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1977-0469019-6
PII: S 0002-9939(1977)0469019-6
Article copyright: © Copyright 1977 American Mathematical Society