The Ising model limit of lattice fields

Author:
Jay Rosen

Journal:
Proc. Amer. Math. Soc. **66** (1977), 114-118

MSC:
Primary 82.60

DOI:
https://doi.org/10.1090/S0002-9939-1977-0469019-6

MathSciNet review:
0469019

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that the limit of lattice fields is an Ising model.

**[1]**K. Wilson and J. Kogut,*The renormalization group and the**expansion*, Phys. Rep.**12C**(1974), 75.**[2]**E. Brezin, J. C. LeGuilloui and J. Zinn-Justin,*Field theoretical approach to critical phenomena*, Phase Transitions and Critical Phenomena, Vol. VI, Academic Press, New York.**[3]**D. Isaacson,*The critical behavior of the anharmonic oscillator*, Rutgers Univ. preprint, 1976.**[4]**James Glimm and Arthur Jaffe,*Critical problems in quantum fields*, Les méthodes mathématiques de la théorie quantique des champs (Colloq. Internat. CNRS, No. 248, Marseille, 1975) Éditions Centre Nat. Recherche Sci., Paris, 1976, pp. 157–173 (English, with French summary). MR**0479186****[5]**Barry Simon and Robert B. Griffiths,*The (𝜙⁴)₂ field theory as a classical Ising model*, Comm. Math. Phys.**33**(1973), 145–164. MR**0428998****[6]**F. Spitzer,*Random fields and interacting particle systems*, Mathematical Association of America, Washington, D.C., 1971. Notes on lectures given at the 1971 MAA Summer Seminar, Williams College, Williamstown, Mass. MR**0381041****[7]**O. E. Lanford III and D. Ruelle,*Observables at infinity and states with short range correlations in statistical mechanics*, Comm. Math. Phys.**13**(1969), 194–215. MR**0256687****[8]**R. Dobrushin,*The description of a random field by means of conditional probabilities*, Theor. Probability Appl.**13**(1968), 197-224.**[9]**David Ruelle,*Statistical mechanics: Rigorous results*, W. A. Benjamin, Inc., New York-Amsterdam, 1969. MR**0289084****[10]**A. Messager and S. Miracle-Sole,*Equilibrium states of the two-dimensional Ising model in the two-phase region*, Comm. Math. Phys.**40**(1975), 187–196. MR**0368676****[11]**P. Billingsly,*Convergence of probability measures*, Wiley, New York, 1968.**[12]**Barry Simon,*The 𝑃(𝜙)₂ Euclidean (quantum) field theory*, Princeton University Press, Princeton, N.J., 1974. Princeton Series in Physics. MR**0489552**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
82.60

Retrieve articles in all journals with MSC: 82.60

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0469019-6

Article copyright:
© Copyright 1977
American Mathematical Society