Finite simple groups containing a self-centralizing element of order

Authors:
John L. Hayden and David L. Winter

Journal:
Proc. Amer. Math. Soc. **66** (1977), 202-204

MSC:
Primary 20D05

DOI:
https://doi.org/10.1090/S0002-9939-1977-0450393-1

MathSciNet review:
0450393

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: By a self-centralizing element of a group we mean an element which commutes only with its powers. In this paper we establish the following result:

Theorem. *Let G be a finite simple group which has a self-centralizing element of order* 6. *Assume that G has only one class of involutions. Then G is isomorphic to one of the groups* .

**[1]**Michael Aschbacher,*Thin finite simple groups*, Bull. Amer. Math. Soc.**82**(1976), no. 3, 484. MR**0396735**, https://doi.org/10.1090/S0002-9904-1976-14063-3**[2]**Walter Feit and John G. Thompson,*Finite groups which contain a self-centralizing subgroup of order 3.*, Nagoya Math. J.**21**(1962), 185–197. MR**0142623****[3]**D. Gorenstein,*Centralizers of involutions in finite simple groups*, Finite simple groups (Proc. Instructional Conf., Oxford, 1969) Academic Press, London, 1971, pp. 65–133. MR**0335622****[4]**Daniel Gorenstein,*Finite groups*, Harper & Row, Publishers, New York-London, 1968. MR**0231903****[5]**Daniel Gorenstein and Koichiro Harada,*Finite groups whose 2-subgroups are generated by at most 4 elements*, American Mathematical Society, Providence, R.I., 1974. Memoirs of the American Mathematical Society, No. 147. MR**0367048****[6]**G. Higman,*Odd characterizations of finite simple groups*, (Lecture notes, University of Michigan, 1968).**[7]**Zvonimir Janko,*A new finite simple group with abelian Sylow 2-subgroups and its characterization*, J. Algebra**3**(1966), 147–186. MR**0193138**, https://doi.org/10.1016/0021-8693(66)90010-X**[8]**Zvonimir Janko,*A class of simple groups of characteristic 2*, Finite groups ’72 (Proc. Gainesville Conf., Univ. Florida, Gainesville, Fla., 1972) North-Holland, Amsterdam, 1973, pp. 98–100. North-Holland Math. Studies, Vol. 7. MR**0360800****[9]**Zvonimir Janko and John G. Thompson,*On a class of finite simple groups of Ree*, J. Algebra**4**(1966), 274–292. MR**0201504**, https://doi.org/10.1016/0021-8693(66)90041-X**[10]**Lary Schiefelbusch,*Sylow 2-subgroups of simple groups*, J. Algebra**31**(1974), 131–153. MR**0357599**, https://doi.org/10.1016/0021-8693(74)90010-6**[11]**I. Schur,*Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen*, J. für die r. und a Math.**132**(1907), 85-137.**[12]**Michio Suzuki,*On finite groups containing an element of order four which commutes only with its powers*, Illinois J. Math.**3**(1959), 255–271. MR**0104733**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
20D05

Retrieve articles in all journals with MSC: 20D05

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0450393-1

Article copyright:
© Copyright 1977
American Mathematical Society