FINITE SIMPLE GROUPS CONTAINING
A SELF-CENTRALIZING ELEMENT OF ORDER 6

JOHN L. HAYDEN AND DAVID L. WINTER

Abstract. By a self-centralizing element of a group we mean an element
which commutes only with its powers. In this paper we establish the
following result:

Theorem. Let G be a finite simple group which has a self-centralizing
element of order 6. Assume that G has only one class of involutions. Then G is
isomorphic to one of the groups $M_{11}, J_1, L_3(3), L_2(11), L_2(13)$.

By a self-centralizing (s.c.) element of a group we mean an element which
commutes only with its own powers. The structure of a finite group
containing a s.c. element of order 2 has been known for a long time. The
classification of finite groups with a s.c. element of order 3 was carried out by
Feit and Thompson [2] and is an important tool in this paper. The
determination of finite simple groups containing a s.c. element of prime order
$p > 3$ is a classical problem as yet unsolved although some special cases have
been handled. In [12], M. Suzuki proved that the only finite simple groups
containing a s.c. element of order 4 are $L_2(7), A_6$ and A_7. Finite simple groups
containing a s.c. element of order 8 are studied in [10]. In this paper we
establish the following result.

Theorem. Let G be a finite simple group which has a self-centralizing
element of order 6. Assume that G has only one class of involutions. Then G is
isomorphic to one of the groups $M_{11}, J_1, L_3(3), L_2(11), L_2(13)$.

The alternating groups A_8, A_9 are examples of simple groups with a s.c.
element of order 6 which has two classes of involutions. As indicated in [8], it
may be very difficult to handle groups containing a s.c. element of order 6
having more than one class of involutions.

The smallest Ree group is an example of a nonsimple group containing a
s.c. element of order 6 and having only one class of involutions. It is
isomorphic to an extension of $L_2(2^3)$ by a field automorphism of order 3.

We shall make use of the following theorem.

(1.1) ([2]). If Y is a finite group with a s.c. element of order 3, then Y has a
normal subgroup N such that one of the following holds:

(i) Y/N is cyclic of order 3 and N is nilpotent.
(ii) Y/N is dihedral of order 6 and N is nilpotent.

Received by the editors December 6, 1976 and, in revised form, March 25, 1977.
AMS (MOS) subject classifications (1970). Primary 20D05.
(iii) \(Y/N \cong A_5 \) and \(N \) is an elementary abelian 2-group.
(iv) \(Y/N \cong L_2(7) \) and \(N = 1 \).

From now on we shall let \(G \) denote a group satisfying the hypotheses of our theorem. Then \(G \) contains an element \(x \) of order 3 and an involution \(t \) such that \([t, x] = 1\) and \(C(tx) = \langle tx \rangle\). Furthermore every involution of \(G \) is conjugate to \(t \).

(1.2) \(C(x) = \langle t \rangle L \) where \(L \) is a nilpotent normal subgroup of \(C(x) \) of odd order. \(L/\langle x \rangle \) is abelian and is inverted by \(t \).

Proof. Let \(C = C(x)/(x) \) and let \(v \in C \) be such that \([v, t] = 1\). Then \([v, t] = 1\) and so \([v, t] = x_0 \in \langle x \rangle\). Hence \(v^{-1}tv = x_0 t \). Since \(t \) has order 2, \(x_0 = 1 \) and \(v \in C(t) \cap C(x) = \langle x \rangle \). Hence \(v \in \langle t \rangle \). Thus \(t \) is a s.c. element of \(C \) of order 2. The structure of \(C \) is therefore known and (1.2) follows easily.

(1.3) Let \(H \) be a subgroup of \(G \) with \(tx \in H \). Assume that \(H \) contains a normal 2-subgroup \(U \) with \(t \in U \). Then \(CH(x) = \langle tx \rangle \). Also if \(\tilde{H} = H/U \), then \(\tilde{x} \) is a s.c. element of \(H \) of order 3.

Proof. By (1.2), \(U \cap C(x) = \langle x \rangle \cap CH(x) \). But by (1.2), \(N_{CH(x)}(\langle t \rangle) = \langle tx \rangle \). Hence \(CH(x) = \langle tx \rangle \). This implies that \(\langle x \rangle \) is a Sylow 3-subgroup of \(H \). It is well known and easily verified that \(N(\langle x \rangle) = N_{\tilde{H}}(\langle \tilde{x} \rangle) \). It is also easily checked from this that \(y \in \tilde{H} \) centralizes \(\tilde{x} \) if and only if \(y \in CH(x)U \). Therefore \(CH(x) = \langle tx \rangle \).

(1.4) \(C(t) \) contains a normal subgroup \(N \supset \langle t \rangle \) such that one of the following holds:
(i) \(C(t)/N \) is cyclic of order 3 and \(N/\langle t \rangle \) is nilpotent.
(ii) \(C(t)/N \) is dihedral of order 6 and \(N \) is nilpotent.
(iii) \(C(t)/N \cong A_5 \) and \(N/\langle t \rangle \) is an elementary abelian 2-group.
(iv) \(C(t)/N \cong L_2(7) \) and \(N = \langle t \rangle \).

The remainder of the proof of the theorem is divided into the four cases determined by (1.4). Assume first that (1.4) (iv) holds. Then \(C(t)/\langle t \rangle \cong L_2(7) \). It has been proved by Schur [11, p. 120], that \(C(t) \) is either isomorphic to a direct product of \(\langle t \rangle \) and \(L_2(7) \) or to \(SL(2,7) \). By a result of Janko and Thompson [9], the first case is not possible. In the second case \(C(t) \), and hence \(G \), has a quaternion Sylow 2-subgroup. By a well-known result of Brauer and Suzuki, \(G \) cannot be simple. Therefore (1.4) (iv) cannot hold.

Assume next that (1.4) (iii) holds with \(N = \langle t \rangle \). The argument of the preceding paragraph shows \(C(t) = \langle t \rangle \times K, K \cong A_5 \). Therefore, by [7] \(G \) is isomorphic to \(J_1 \).

In the remaining cases \(C(t) \) is solvable or \(C(t)/N \cong A_5 \). In the latter case \(|N| > 2 \) with \(C(N) \subseteq N \). Hence \(C(t) \) is 2-constrained in all cases. As \(G \) has
only one class of involutions, a theorem of Gorenstein and Goldschmidt [3, p. 74] implies \(O(C(t)) = 1 \) or \(SCN_3(2) = \emptyset \). In the latter case, Corollary 4, [5] shows \(G \) is isomorphic to one of the groups \(L_2(q), L_3(q), U_3(q), q \) odd, \(U_4(4), \) \(A_n \), or \(M_{11} \). The only groups among these satisfying our hypotheses are \(L_3(3), M_{11}, L_3(11) \) and \(L_3(13) \).

We may now assume \(O(C(t)) = 1 \). This forces \(N \) to be a 2-group and \(|C(t)| = 2^a \cdot 3^b \cdot 5^c \) for some \(a, b \). We now claim that if \(M \) is a 2-local subgroup of \(G \), then each Sylow subgroup of \(M \) of odd order is cyclic.

Without loss we may assume \(t \in Z(O_2(M)) = Z \). Suppose \(M \) contains an elementary abelian \(p \)-subgroup \(P \) of order \(p \). Without loss, we can assume \(t \in Z \). Then \(y \in C(t) \), \(p \in \{3, 5\} \). Now let \(y_1 \in P - \langle y \rangle \). Since \(P < M \), \(t^{y_1} \in Z \cap C(t) \). Also, \((t^{y_1})^y = (t^y)^{y_1} = t^{y_1} \) so \(t^{y_1} \in C(t) \cap C(y) \). If \(p = 3, |y| = 3 \) and, as \(\langle ty \rangle \) is conjugate to \(\langle tx \rangle \) in \(C(t) \), \(C(t) \cap C(y) = \langle ty \rangle \).

If \(p = 5 \), we are in case (1.4)(iii). Let \(\overline{C} = C(t)/\langle ty \rangle \). As \(\overline{y} \) is a s.c. element of order 3 in \(\overline{C} \), Theorem 8.2 of [6] implies \(\overline{N} \cong N/\langle t \rangle \) is the direct sum of minimal normal subgroups of \(\overline{C} \) of order 16 on which \(A_5 \cong SL(2, 4) \) acts in the natural way. Consequently \(\overline{y} \) is a s.c. element of order 5 in \(\overline{C} \) and \(C(t) \cap C(y) = \langle ty \rangle \) in this case as well. In all cases \(t^{y_1} \in C(t) \cap C(y) = \langle ty \rangle \) so \(t^{y_1} = t \). Hence \(y_1 \in C(ty) = \langle ty \rangle \) and \(y_1 \in \langle ty \rangle \), a contradiction proving the claim. A recent result of M. Aschbacher [1] now gives the possibilities for \(G \). We see that there is no additional group satisfying our conditions. This completes the proof of the theorem.

References

11. I. Schur, Untersuchungen über die Darstellung der endlichen Gruppen durch gebrochene lineare Substitutionen, J. für die re. und a Math. 132 (1907), 85–137.

Department of Mathematics, Bowling Green State University, Bowling Green, Ohio 43403

Department of Mathematics, Michigan State University, East Lansing, Michigan 48824