On points at which a set is cone-shaped

Authors:
M. Edelstein, L. Keener and R. O’Brien

Journal:
Proc. Amer. Math. Soc. **66** (1977), 327-330

MSC:
Primary 46B05; Secondary 52A05

MathSciNet review:
0454593

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A set in a normed linear space *X* is said to be cone-shaped at if there is a closed half-space that has *x* in its bounding hyperplane and contains . The point *x* is called a cone point. In this paper it is shown that if *X* has an equivalent uniformly convex and uniformly smooth norm and if is a closed bounded subset with the finite visibility property for cone points (i.e., for every finite set *F* of cone points of *S* there is a point such that for all ), then *S* is starshaped.

**[1]**R. Alexander and M. Edelstein,*Finite visibility and starshape in Hilbert space*(preprint).**[2]**D. Amir and J. Lindenstrauss,*The structure of weakly compact sets in Banach spaces*, Ann. of Math. (2)**88**(1968), 35–46. MR**0228983****[3]**J. Borwein, M. Edelstein, and R. O’Brien,*Visibility and starshape*, J. London Math. Soc. (2)**14**(1976), no. 2, 313–318. MR**0428010****[4]**Mahlon M. Day,*Normed linear spaces*, 3rd ed., Springer-Verlag, New York-Heidelberg, 1973. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 21. MR**0344849****[5]**Joseph Diestel,*Geometry of Banach spaces—selected topics*, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR**0461094****[6]**M. Edelstein,*On nearest points of sets in uniformly convex Banach spaces*, J. London Math. Soc.**43**(1968), 375–377. MR**0226364****[7]**M. Edelstein and L. Keener,*Characterizations of infinite-dimensional and nonreflexive spaces*, Pacific J. Math.**57**(1975), no. 2, 365–369. MR**0383046****[8]**V. L. Klee Jr.,*Extremal structure of convex sets. II*, Math. Z.**69**(1958), 90–104. MR**0092113****[9]**M. Krasnosselsky,*Sur un critère pour qu’un domaine soit étoilé*, Rec. Math. [Mat. Sbornik] N. S.**19(61)**(1946), 309–310 (Russian, with French summary). MR**0020248****[10]**N. T. Peck,*Support points in locally convex spaces*, Duke Math. J.**38**(1971), 271–278. MR**0282191****[11]**S. B. Stečkin,*Approximation properties of sets in normed linear spaces*, Rev. Math. Pures Appl.**8**(1963), 5–18 (Russian). MR**0155168****[12]**Frederick A. Valentine,*Convex sets*, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964. MR**0170264**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B05,
52A05

Retrieve articles in all journals with MSC: 46B05, 52A05

Additional Information

DOI:
http://dx.doi.org/10.1090/S0002-9939-1977-0454593-6

Keywords:
Starshaped,
superreflexive,
finite visibility

Article copyright:
© Copyright 1977
American Mathematical Society