Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A remark on directional contractions

Authors: W. A. Kirk and William O. Ray
Journal: Proc. Amer. Math. Soc. 66 (1977), 279-283
MSC: Primary 47H10
MathSciNet review: 0454755
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let X be a Banach space and D a convex subset of X. A mapping $ T:D \to X$ is called a directional contraction if there exists a constant $ \alpha \in (0,1)$ such that corresponding to each $ x,y \in D$ there exists $ \varepsilon = \varepsilon (x,y) \in (0,1]$ for which $ \left\Vert {T(x + \varepsilon (y - x)) - T(x)} \right\Vert \leqslant \alpha \varepsilon \left\Vert {x - y} \right\Vert$. Tests for lipschitzianness are obtained which yield the fact that if a closed mapping is a directional contraction, then it must be a global contraction, and sufficient conditions are given under which a nonclosed directional contraction $ T:D \to D$ always has a fixed point.

References [Enhancements On Off] (What's this?)

  • [1] M. Altman, Contractor directions, directional contractors and directional contractions for solving equations, Pacific J. Math. 62 (1976), 1-18. MR 0473939 (57:13597)
  • [2] A. Bróndsted, On a lemma of Bishop and Phelps, Pacific J. Math. 55 (1974), 335-341. MR 0380343 (52:1243)
  • [3] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc. 215 (1976), 241-251. MR 0394329 (52:15132)
  • [4] J. Caristi and W. A. Kirk, Geometric fixed point theory and inwardness conditions, Proc. Conf. on Geometry of Metric and Linear Spaces, Lecture Notes in Math., vol. 490, Springer-Verlag, Berlin and New York, 1975, pp. 75-83. MR 0399968 (53:3806)
  • [5] I. Ekeland, Sur les problèmes variationnels, C. R. Acad. Sci. Paris 275 (1972), 1057-1059. MR 0310670 (46:9768)
  • [6] W. A. Kirk and J. Caristi, Mapping theorems in metric and Banach spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 23 (1975), 891-894. MR 0385654 (52:6514)
  • [7] W. A. Kirk, Caristi's fixed point theorem and metric convexity, Colloq. Math. 36 (1976), 81-86. MR 0436111 (55:9061)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47H10

Retrieve articles in all journals with MSC: 47H10

Additional Information

Keywords: Contraction mapping, directional contraction, fixed point theorem
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society