Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

The automorphism group of $ 2\sb{F\sb{4}}(2)'$


Author: Richard Weiss
Journal: Proc. Amer. Math. Soc. 66 (1977), 208-210
MSC: Primary 20D45; Secondary 05C25
DOI: https://doi.org/10.1090/S0002-9939-1977-0460464-1
MathSciNet review: 0460464
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We give a new proof that $ {\operatorname{Aut}}{(^2}{F_4}(2)') \cong {\operatorname{Aut}}{(^2}{F_4}(2)) \cong {\;^2}{F_4}(2)$ (see [4]).


References [Enhancements On Off] (What's this?)

  • [1] I. Z. Bouwer and D. Ž. Djoković, On regular graphs. III, J. Combinatorial Theory Ser. B 14 (1973), 268-277. MR 0316310 (47:4858)
  • [2] R. Carter, Simple groups of Lie type, Wiley, New York, 1971. MR 0407163 (53:10946)
  • [3] A. Gardiner, Arc transitivity in graphs, Quart. J. Math. Oxford Ser. 24 (1973), 399-407. MR 0323617 (48:1973)
  • [4] R. L. Griess, Jr. and R. Lyons, The automorphism group of the Tits simple group $ ^2{F_4}(2)'$, Proc. Amer. Math. Soc. 52 (1975), 75-78. MR 0390054 (52:10880)
  • [5] J. Tits, Algebraic and abstract simple groups, Ann. of Math. 80 (1964), 313-329. MR 0164968 (29:2259)
  • [6] H. Whitney, Congruent graphs and the connectivity of graphs, Amer. J. Math. 54 (1932), 150-168. MR 1506881

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20D45, 05C25

Retrieve articles in all journals with MSC: 20D45, 05C25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0460464-1
Keywords: Automorphism group, group of Lie type, (G, s)-regular graph, generalized n-gon
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society