CONVERGENCE OF CERTAIN COSINE SUMS IN THE METRIC SPACE L_1

BABU RAM

ABSTRACT. We consider here the L_1 convergence of Rees-Stanojević cosine sums to a cosine trigonometric series belonging to the class S defined by Sidon and deduce as corollaries some previously known results from our result.

1. Introduction. Sidon [6] introduced the following class of cosine trigonometric series: Let

\begin{equation}
\frac{a_0}{2} + \sum_{k=1}^{\infty} a_k \cos kx
\end{equation}

be a cosine series satisfying $a_k = o(1)$, $k \to \infty$. If there exists a sequence $\{A_k\}$ such that

\begin{align}
&\text{(1.2)} \quad A_k \downarrow 0, \quad k \to \infty, \\
&\text{(1.3)} \quad \sum_{k=0}^{\infty} A_k < \infty, \\
&\text{(1.4)} \quad |\Delta a_k| < A_k, \quad \forall k,
\end{align}

we say that (1.1) belongs to the class S.

Let the partial sums of (1.1) be denoted by $S_n(x)$ and $f(x) = \lim_{n \to \infty} S_n(x)$.

\begin{equation}
g_n(x) = \frac{1}{2} \sum_{k=0}^{n} \Delta a_k + \sum_{k=1}^{n} \sum_{j=k}^{n} \Delta a_j \cos kx
\end{equation}

converge in the L^1 metric to (1.1) if and only if given $\epsilon > 0$, there is a $\delta(\epsilon) > 0$ such that

\begin{equation}
\int_{0}^{\delta} \left| \sum_{k=n+1}^{\infty} \Delta a_k D_k(x) \right| dx < \epsilon
\end{equation}

for all $n > 0$. It has been shown in the same paper that the classical Young-Kolmogorov-Stanojević sufficient conditions for integrability of (1.1) imply (1.6).
CONVERGENCE OF COSINE SUMS

Generalising a classical result [1, p. 204], Teljakovskii [7] proved the following.

Theorem A. If (1.1) belongs to the class S, then a necessary and sufficient condition for L^1 convergence of (1.1) is $a_n \log n = o(1)$, $n \to \infty$.

2. **Lemmas.** The proofs of our results are based upon the following lemmas.

Lemma 1 (Fomin [2]). If $|c_k| < 1$, then

$$
\int_0^\pi \left| \sum_{k=0}^n c_k \frac{\sin(k + 1/2)x}{2 \sin x/2} \right| dx < C(n + 1),
$$

where C is a positive absolute constant.

Lemma 2. If (1.1) belongs to the class S, then

$$g_n(x) = S_n(x) - a_{n+1}D_n(x),$$

where $D_n(x)$ denotes the Dirichlet kernel.

Proof. Since (1.1) belongs to the class S, we have

$$a_k \to 0 \quad \text{and} \quad \sum_{k=0}^\infty |\Delta a_k| < \infty.$$

The conditions of Lemma 1 of Garrett and Stanojević [3] are thus satisfied and the result follows.

3. **Main result.** The main result of this paper reads:

Theorem. If (1.1) belongs to the class S, then (1.6) holds. Hence

$$\|f - g_n\|_{L^1} = o(1), \quad n \to \infty.$$

Proof. Making use of Abel’s transformation and Lemma 1, we have

$$
\int_0^\pi |f(x) - g_n(x)| \, dx = \int_0^\pi \left| \sum_{k=n+1}^\infty \Delta a_k D_k(x) \right| \, dx
$$

$$= \int_0^\pi \left| \sum_{k=n+1}^\infty A_k \frac{\Delta a_k}{A_k} D_k(x) \right| \, dx
$$

$$= \int_0^\pi \left| \sum_{k=n+1}^\infty \Delta A_k \sum_{i=0}^k \frac{\Delta a_i}{A_i} D_i(x) \right| \, dx
$$

$$\leq \sum_{k=n+1}^\infty \Delta A_k \int_0^\pi \left| \sum_{i=0}^k \frac{\Delta a_i}{A_i} D_i(x) \right| \, dx
$$

$$\leq C \sum_{k=n+1}^\infty (k + 1)\Delta A_k.$$

(1.2) and (1.3) now imply the conclusion of the Theorem.
4. **Corollaries.** (i) Using Lemma 2, we notice that

\[
\int_0^\pi |f(x) - S_n(x)| \, dx = \int_0^\pi |f(x) - g_n(x) + g_n(x) - S_n(x)| \, dx \\
\leq \int_0^\pi |f(x) - g_n(x)| \, dx + \int_0^\pi |g_n(x) - S_n(x)| \, dx \\
\leq \int_0^\pi |f(x) - g_n(x)| \, dx + \int_0^\pi |a_{n+1}D_n(x)| \, dx
\]

and

\[
\int_0^\pi |a_{n+1}D_n(x)| \, dx = \int_0^\pi |g_n(x) - S_n(x)| \, dx \\
\leq \int_0^\pi |f(x) - S_n(x)| \, dx + \int_0^\pi |f(x) - g_n(x)| \, dx.
\]

Since \(\lim_{n \to \infty} \int_0^\pi |f(x) - g_n(x)| \, dx = 0\) by our Theorem and \(\int_0^\pi |a_{n+1}D_n(x)| \, dx\) behaves like \(a_{n+1} \log n\) for large values of \(n\), Theorem A of Teljakovskiï follows.

(ii) Let \(a_k \to 0\) and \(\sum_{k=1}^{\infty} (k + 1)|\Delta^2 a_k| < \infty\). Then \(g_n\) converges to \(f\) in the metric space \(L\) since the trigonometric cosine series (1.1) with quasi-convex coefficients belongs to the class \(S\) if we choose \(A_k = \sum_{m=k}^{\infty} |\Delta^2 a_m|\). This is Example 1 of [3].

5. **Remark.** In [4], Garrett and Stanojević proved (Corollary B, p. 70) that their Theorem B extends the Teljakovskiï result.

My thanks are due to the referee for his wise comments which have definitely improved the presentation of this paper.

References

Department of Mathematics, Rohtak University, Rohtak-124001, India