A MEASURE THEORETIC VARIANT
OF BLUMBERG'S THEOREM

JACK B. BROWN

Abstract. It is the purpose of this note to present a measure theoretic
variant of Blumberg's theorem about continuous restrictions of arbitrary
real functions.

Henry Blumberg [1] proved a theorem in 1922, which in its most basic form
is stated as follows:

Theorem A. For every \(f: I \rightarrow \mathbb{R} \), there exists \(D \subset I \), \(D \) dense in \(I \), such that
\(f|D \) is continuous.

\(I \) is the interval \([0, 1]\) and \(\mathbb{R} \) denotes the reals. Blumberg observed [2] that
the set \(D \) cannot be made to have cardinality \(c \) because of the function \(f: I \rightarrow \mathbb{R} \) of Sierpiński and Zygmund [6] which has no continuous restriction of
cardinality \(c \). However, the author established theorems [3] from which the
following results:

Theorem B. For every \(f: I \rightarrow \mathbb{R} \), there exists \(W \subset I \), \(W \) c-dense in \(I \), such
that \(f|W \) is pointwise discontinuous (PWD).

\(W \) is c-dense in \(I \) if and only if every subinterval of \(I \) contains \(c \)-many
points of \(W \). A function \(g \) with domain \(W \) is PWD if and only if there exists
\(D \subset W \), \(D \) dense in \(W \), such that \(g \) is continuous at each element of \(D \).

P. Erdős recently asked the author if something could be done to make the
set \(W \) in the conclusion of Theorem B large relative to Lebesgue measure \(\lambda \).

First, notice that it would be easy to alter the set \(W \) in such a way to make
it an M set (i.e. have \(\lambda^0(W) > 0 \)). Let \(D \subset W \) be the set on which \(f|W \) is
continuous, let \(C \) be a Cantor subset of \(I \) of positive measure, and let
\(W' = W \cup C \). Then \(\lambda^0(W') > 0 \), and \(f|W' \) is still continuous at each
element of \(D - (C \cap D) \), which is dense in \(W' \).

On the other hand, it would not be possible to make \(W \) have outer measure
1 or even be M-dense in \(I \) if \(f \) is a function such as the following: let
\(C_1, C_2, \ldots, \) be a sequence of disjoint Cantor subsets of \(I \) such that \(C_1 \cup C_2 \cup \ldots \)
has measure 1, and let \(f(x) = n \) if \(x \in C_n \). \(A \) is M-dense in \(B \) if
\(A \subset B \) and every open set which intersects \(B \) intersects \(A \) in an M set.

Next we might ask if \(W \) can be made to be M-dense in itself and drop the

Received by the editors February 22, 1977.

© American Mathematical Society 1977
requirement that it be dense in \(I \). Dropping the requirement that \(W \) be dense in \(I \) will, in fact, make it possible to obtain differentiability on a dense subset of \(W \) if infinite derivatives are allowed (i.e. \(f \) is differentiable at \(x \) if \(f \) is continuous at \(x \), \(x \) is a limit point of \(D_{f} \), and there is \(t, -\infty < t < \infty \), such that if \(\{x_{n}\} \) is a sequence of elements of \(D_{f} \) converging to \(x \), then \(\{(f(x) - f(x_{n}))/\left(x - x_{n}\right)\} \) converges to \(t \)). In [5] Ceder proved the following:

Theorem C. Suppose \(X \subseteq I \) is uncountable. Then for every \(f: X \to \mathbb{R} \) there exists \(D \subseteq X \), \(D \) bilaterally dense in itself, such that \(f|D \) is differentiable.

In [4] the author proved the following variant of Ceder’s theorem:

Theorem D. Suppose \(X \subseteq I \) is not an \(L_{1} \) set. Then for every \(f: X \to \mathbb{R} \) there exist \(W \subseteq X \) and \(D \subseteq W \), \(W \) bilaterally c-dense in itself and \(D \) dense in \(W \) such that \(f|W \) is differentiable at each element of \(D \).

An \(L_{1} \) set is a countable union \(M_{1} \cup M_{2} \cup \ldots \) such that for each \(i \), every nowhere dense in \(M_{i} \) subset of \(M_{i} \) has cardinality less than \(c \). A set is bilaterally dense (c-dense) (\(M \)-dense) in itself if and only if every closed interval which intersects it intersects it in an infinite set (set of cardinality \(c \)) (\(M \) set). The converse of Theorem D was also shown to hold. An alteration of the proof of Theorem D will prove the following:

Theorem E. Suppose \(X \subseteq I \) is an \(M \) set. Then for every \(f: X \to \mathbb{R} \), there exist \(W \subseteq X \) and \(D \subseteq W \), \(W \) bilaterally \(M \)-dense in itself and \(D \) dense in \(W \), such that \(f|W \) is differentiable at each element of \(D \).

The proof of Theorem E can proceed almost identically with the proof of Theorem 1 of [4], with the notions “\(L_{1} \)” and “\(L_{2} \)” (which means “not \(L_{1} \)” of [4] replaced by “null” (which in this case means “of measure zero”) and “\(M \)” respectively. Lemma 1 of [4] states that if \(x \) is an element of a bilaterally \(L_{2} \)-dense in itself set \(A \), then there exists a bilaterally c-dense in itself nowhere dense in \(A \) subset \(N \) of \(A \) containing \(x \). Indeed, the fact that the Continuum Hypothesis implies the existence of a Lusin set, so that the conclusion of Lemma 1 cannot be obtained if it is just known that \(A \) is bilaterally c-dense in itself, is the cause of most of the difficulties encountered in proving Theorems B and D, and brought about the necessity of defining properties \(L_{1} \) and \(L_{2} \). The situation with respect to \(M \) sets is much simpler in the sense that Lemma 1 of [4] can be replaced by the following:

Lemma 1’. If \(x \) is an element of a bilaterally \(M \)-dense in itself set \(A \), then there exists a bilaterally \(M \)-dense in itself nowhere dense in \(A \) subset \(N \) of \(A \) containing \(x \).

Proof. There exists a \(G_{2} \) set \(B \) such that \(A \subseteq B \) and \(\lambda^{0}(A) = \lambda(B) \). Assume that \(B \subseteq \text{Cl}(A) \), so that \(B \) is \(M \)-dense in itself. It follows that if \(C \subseteq B \) and \(\lambda(C) > 0 \), then \(\lambda^{0}(A \cap C) = \lambda(C) \). For each positive integer \(n \), the set \(A_{n} = [x, x + 1/n] \cap A \) has positive outer measure. Consider a Cantor set \(C_{n} \).
of positive measure such that C_n is a subset of and nowhere dense relative to $[x, x + 1/n] \cap B$. Let C_n' consist of the points of density 1 of C_n. Then $R_n = C_n' \cap A$ will be a bilaterally M-dense in itself subset of $[x, x + 1/n] \cap A$ which is nowhere dense in $[x, x + 1/n] \cap A$. The set $[x - 1/n, x] \cap A$ will contain a similar set L_n. Then

$$N = L_1 \cup L_2 \cup \ldots \cup (x) \cup R_1 \cup R_2 \cup \ldots$$

is the desired set.

Now, Lemmas 2–6 of [4] can be altered by replacing “L_1” and “L_2” by “null” and “M”, respectively, and the proofs will be the same. Then on stage (2) of the inductive procedure in the proof of Theorem 1 [4, p. 39], make N_s be bilaterally M-dense in itself, and Theorem E will be proved.

REFERENCES

Department of Mathematics, Auburn University, Auburn, Alabama 36830