Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Group-quotients with positive sectional curvatures


Author: Robert Geroch
Journal: Proc. Amer. Math. Soc. 66 (1977), 321-326
MSC: Primary 53C20; Secondary 53C30
MathSciNet review: 0464111
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let H be a closed subgroup of compact Lie group G. A necessary and sufficient condition is obtained for the existence of a left-invariant Riemannian metric on G such that the subduced metric on the quotient H G has strictly positive sectional curvatures.


References [Enhancements On Off] (What's this?)

  • [1] L. Berard-Bergery, Les variétés riemanniennes homogènes simplement connexes de dimension impaire à courbure strictement positive, J. Math. Pures Appl. (9) 55 (1976), no. 1, 47–67 (French). MR 0417987
  • [2] Barrett O’Neill, The fundamental equations of a submersion, Michigan Math. J. 13 (1966), 459–469. MR 0200865
  • [3] Hans Samelson, On curvature and characteristic of homogeneous spaces, Michigan Math. J. 5 (1958), 13–18. MR 0103509
  • [4] J. L. Synge, The first and second variations of the length-integral in Riemannian space, Proc. London Math. Soc. (2) 25 (1926), 247-264.
  • [5] Nolan R. Wallach, Compact homogeneous Riemannian manifolds with strictly positive curvature, Ann. of Math. (2) 96 (1972), 277–295. MR 0307122

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 53C20, 53C30

Retrieve articles in all journals with MSC: 53C20, 53C30


Additional Information

DOI: http://dx.doi.org/10.1090/S0002-9939-1977-0464111-4
Article copyright: © Copyright 1977 American Mathematical Society