COUNTING GROUP ELEMENTS OF ORDER p MODULO p^2

MARCEL HERZOG

Abstract. Let G be a finite group of order divisible by the prime p. It is shown that the number of elements of G of order p is congruent to -1 modulo p^2, unless a Sylow p-subgroup of G is cyclic, generalized quaternion, dihedral or quasidihedral.

1. Introduction. In this paper G denotes a finite group, $I_p(G)$ is the set of elements of G of order p and $i_p(G) = |I_p(G)|$. This research originated from an effort to find an elementary proof to the following theorem: if S is a 2-group and if $i_2(S) \equiv 1 \pmod{4}$, then S is cyclic, generalized quaternion, dihedral or quasidihedral. A character theoretical proof, attributed to Alperin, Feit and Thompson, was published in the very interesting book of Isaacs [4, Theorem 4.9]. It appears to be a simplification of Thompson’s proof given in [5, Theorem 6.2]. Having found a simple elementary proof of that theorem (basically our Lemma 5), we discovered that a different elementary proof was given by Ja. G. Berković in [1, Corollary 5.3]. Moreover, N. Blackburn [2] generalized Berković’s results from 2-groups to p-groups, using a method similar to ours. The aim of this paper is to determine $i_p(G)$ modulo p^2 for an arbitrary finite group G (Theorem 3 in §3). For $p > 2$ the theorem is known [3, Theorem 4.6]; our short, straightforward proof (basically Lemma 4) is given here for completeness’ sake.

Our only nonstandard notation is E_{p^n} for an elementary abelian group of order p^n.

We shall use extensively the following well-known fact (see, for example, [6, Proposition 9.5]): If S is a p-group, and S is not cyclic, generalized quaternion, dihedral or quasidihedral, then S has a normal F_p.

2. $i_p(G)$ modulo p. The following theorem is well known.

THEOREM 1. If $p \mid |G|$, then:

\[i_p(G) \equiv -1 \pmod{p}. \]

Proof. Let $E \equiv E_{p^n}$ be an elementary abelian p-group of maximal order in G. As $p \mid |G|$, $n > 1$. Let E act on $I_p(G)$ by conjugation, and let f be the number of fixed points. Since the length of each E-orbit divides p^n, $i_p(G) \equiv f \pmod{p}$. However, by the maximality of E, it fixes exactly its own $p^n - 1$
elements in $I_p(G)$. Thus:

$$i_p(G) \equiv f = p^n - 1 \equiv -1 \quad (\text{mod } p).$$

3. $i_p(G)$ modulo p^2. For proving the main result we also need the following reduction theorem.

Theorem 2. Let $E \equiv E_p^*$ be a subgroup of G, and let $T \equiv I_p(N_G(E))$ and $D \equiv I_p(G) \setminus T$. Suppose that:

(2) if $a \in D$ and $H = C_E(a) \times \langle e \rangle$ for some $e \in E \setminus C_E(a)$,

then $a \notin N_G(H)$.

Then:

$$i_p(G) \equiv |T| \quad (\text{mod } p^n).$$

Proof. Clearly if $a \in D$ then $a^xe \in D$ for every $x \in E$ and $e \in C_E(a)$.

Define a relation \sim on D as follows: for $a, b \in D$, $a \sim b$ if $b = a^xe$ for some $x \in E$ and $e \in C_E(a)$. We claim that:

(i) \sim is an equivalence relation.

This follows easily from the fact that if $a \in D$, $x \in E$ and $e \in C_E(a)$, then $f \in E$ centralizes a^xe if and only if it centralizes a.

Thus D is a disjoint union of equivalence classes with respect to \sim. Let $a \in D$, F be the equivalence class to which a belongs, $E_1 \equiv C_E(a)$ and $E = E_1 \times E_2$. Clearly

$$F = \{ a^xe | x \in E_2, e \in E_1 \}.$$

We claim that:

(ii) $|F| = p^n$.

In order to prove (ii) it suffices to show that if $a = a^xe$, where $x \in E_2$ and $e \in E_1$, then $x = 1$. As $a = x^{-1}axe$, it follows that $a^{-1}xa = xe$, hence $a \in N_G\langle x, E_1 \rangle$. By (2) $x \in E_1 \cap E_2 = 1$, as required.

It follows from (ii) that $|D| \equiv 0 \pmod{p^n}$. Thus

$$i_p(G) = |D| + |T| \equiv |T| \quad (\text{mod } p^n).$$

Remark. Condition (2) of Theorem 2 is satisfied in the following cases (S denotes here a Sylow p-subgroup of G):

(i) $|E| < p^2$;

(ii) S is abelian;

(iii) $\Omega_1(S)$ is abelian;

(iv) S is a TI-group, $E \lhd S$.

Proof. (i) If $a \in N_G(H)$, then $H \neq E$, hence $|E| = p^2$ and $|H| = p$. But then $H \subseteq C_E(a)$, a contradiction.

(ii) Follows from (iii).

(iii) If $a \in N_G(H)$, then $\langle a, H \rangle \subseteq \Omega_1(S^g)$ for some $g \in G$. Thus $H \subseteq C_E(a)$, a contradiction.

(iv) If $a \in N_G(H)$ then $a \in S$, hence $a \in T$, a contradiction.

We state now our main result.
Theorem 3. Suppose that \(p \mid |G| \) and let \(S \) be a Sylow \(p \)-subgroup of \(G \). Then the following statements hold.

(a) If \(|S| = p \), then;

\[i_p(G) \equiv rp - 1 \quad (\text{mod } p^2) \]

where \(0 < r < p - 1 \). Moreover, there exist groups satisfying (3) with respect to each such \(r \).

(b) If \(|S| > p \) and \(S \) is cyclic, generalized quaternion, dihedral or quasi-dihedral, then:

\[i_p(G) \equiv p - 1 \quad (\text{mod } p^2). \]

(c) Otherwise,

\[i_p(G) \equiv -1 \quad (\text{mod } p^2). \]

Proof. We shall prove Theorem 3 in a series of lemmas.

Lemma 1. If \(|S| = p \), then (a) holds.

Proof. In view of Theorem 1, it suffices to construct examples in which (3) holds for every \(r \) between 0 and \(p - 1 \). By Dirichlet's theorem, there exists a prime \(q > p \) such that

\[q = (1 - r)p + 1 \quad (\text{mod } p^2). \]

As \(q \equiv 1 \pmod{p} \), there exists a Frobenius group \(G \) of order \(pq \). Clearly:

\[i_p(G) = (p - 1)q \equiv (p - 1)((1 - r)p + 1) \equiv rp - 1 \quad (\text{mod } p^2). \]

Lemma 2. If \(|S| > p \) and \(S \) is either cyclic or generalized quaternion, then \(i_p(G) \equiv p - 1 \pmod{|S|} \). In particular, (4) holds.

Proof. Let \(S \) act on \(I_p(G) \) by conjugation. Clearly there are \(p - 1 \) fixed points, consisting of the elements of \(I_p(S) \), and the other orbits are of length \(|S| \). The lemma follows.

Lemma 3. Suppose that \(S \) is either dihedral or quasidihedral. Then (4) holds.

Proof. There exists \(E \equiv E_2 \subseteq S \). By Theorem 2 and the Remark, it suffices to prove Lemma 3 under the assumption: \(E \triangleleft G \). The structure of \(S \) forces it to be dihedral of order 8. As \(E \triangleleft G \),

\[i_2(G) = i_2(E) + \sum (i_2(P) - i_2(E)) = 3 + \sum 2, \]

the summation ranging over all Sylow 2-subgroups \(P \) of \(G \). As \(G \) has an odd number of \(P \), we get

\[i_2(G) \equiv 3 + 2 \equiv 1 \quad (\text{mod } 4), \]

as required.

Lemma 4. Suppose that \(p > 2 \) and \(S \) is noncyclic. Then (5) holds.

Proof. There exists \(E = E_{p^2} \triangleleft S \). By Theorem 2 and the Remark, it suffices to prove Lemma 4 under the assumption: \(E \triangleleft G \). If \(x \in G \setminus E \) and
If \(x^p \in E \), then \(\langle x, E \rangle \) is a regular group of order \(p^3 \) and distinct groups of this type intersect in \(E \). Letting \(\Sigma \) range over all such subgroups of \(G \), we get:

\[
i_p(G) = i_p(E) + \sum (i_p(\langle x, E \rangle) - i_p(E)).
\]

As \(i_p(E) = p^2 - 1 \) and \(i_p(\langle x, E \rangle) = p^2 - 1 \) or \(p^3 - 1 \) (as \(\langle x, E \rangle \) is regular), (7) yields (5).

Lemma 5. Suppose that \(p = 2 \) and \(S \) is none of the following: cyclic, generalized quaternion, dihedral or quasidihedral. Then (5) holds.

Proof. There exists \(E \cong E_2 \triangleleft S \) and as \(S \) is not dihedral, \(C_S(E) \supseteq E \). By Theorem 2 and the Remark, it suffices to prove Lemma 5 under the assumption: \(E \lhd G \). As in Lemma 4, we get

\[
i_2(G) = 3 + \Sigma_1 (i_2(\langle x, E \rangle) - 3) + \Sigma_2 (i_2(\langle y, E \rangle) - 3),
\]

where \(3 = i_2(E) \), \(\Sigma_1 \) ranges over different \(\langle x, E \rangle \) with \(x \in C_G(E) \setminus E \), \(x^2 \in E \) and \(\Sigma_2 \) ranges over different \(\langle y, E \rangle \) with \(y \in G \setminus C_G(E) \), \(y^2 \in E \). Each \(\langle x, E \rangle \) is regular, hence \(i_2(\langle x, E \rangle) = 3 \) or \(7 \). Thus \(\Sigma_1 \equiv 0 \pmod{4} \) and it suffices to show that \(\Sigma_2 \equiv 0 \pmod{4} \). Each \(\langle y, E \rangle \) is a dihedral group of order 8, hence \(i_2(\langle y, E \rangle) - 3 = 5 - 3 = 2 \) and it suffices to show that \(r_2 \), the number of summands in \(\Sigma_2 \), is even. As \(2 \mid |C_G(E)/E| \), Theorem 1 yields:

\[
r_2 = i_2(G/E) - i_2(C_G(E)/E) \equiv 1 - 1 = 0 \pmod{2},
\]
as required.

Theorem 3 follows from Lemmas 1–5.

Note. It follows from (5) and the fact that \((p - 1) \mid i_p(G) \), that:

\[
i_p(G) = p^2 - 1 + b(p - 1)p^2,
\]

where \(b \) is a nonnegative integer.

References

Department of Mathematics, Institute of Advanced Studies, Australian National University, Canberra, Australia