Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



New topological extension properties

Author: Toshiji Terada
Journal: Proc. Amer. Math. Soc. 67 (1977), 162-166
MSC: Primary 54D30
MathSciNet review: 0458368
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A topological property $ \mathcal{P}$ is called an extension property if $ \mathcal{P}$ is closed-hereditary and productive. In this paper new topological extension properties are introduced, which to some extent fill up a gap between complete regularity and compactness.

References [Enhancements On Off] (What's this?)

  • [1] R. Engelking and S. Mrówka, On E-compact spaces, Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys. 6 (1958), 429-435. MR 0097042 (20:3522)
  • [2] L. Gillman and M. Jerison, Rings of continuous functions, Van Nostrand, Princeton, N.J., 1960. MR 0116199 (22:6994)
  • [3] A. Misra, A topological view of P-spaces, General Topology and Appl. 2 (1972), 349-362. MR 0317304 (47:5851)
  • [4] L. A. Steen and J. A. Seebach, Jr., Counterexamples in topology, Holt, New York, 1970. MR 0266131 (42:1040)
  • [5] R. E. Wheeler, On separable z-filters, General Topology and Appl. 5 (1975), 333-345. MR 0391013 (52:11835)
  • [6] R. G. Woods, Topological extension properties, Trans. Amer. Math. Soc. 210 (1975), 365-385. MR 0375238 (51:11434)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 54D30

Retrieve articles in all journals with MSC: 54D30

Additional Information

Keywords: Extension property, zero-set, partition, Stone-Čech compactification, realcompactness, P-space
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society