Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A property of finite $ p$-groups


Author: Shoichi Kondo
Journal: Proc. Amer. Math. Soc. 67 (1977), 35-37
MSC: Primary 20C15
DOI: https://doi.org/10.1090/S0002-9939-1977-0460439-2
MathSciNet review: 0460439
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ R(G)$ denote the character ring of a finite group G and let $ \Lambda $ be a commutative ring with identity. In this paper we show that if $ G \ne \{ 1\} $, then $ \Lambda { \otimes _Z}R(G)$ has only one maximal ideal if and only if G is a p-group and $ \Lambda $ has only one maximal ideal m such that $ \Lambda /\mathfrak{m}$ is of characteristic p.


References [Enhancements On Off] (What's this?)

  • [1] P. J. Allen and J. Neggers, A characterization of Steinitz group rings, Proc. Amer. Math. Soc. 49 (1975), 39-42. MR 0360668 (50:13115)
  • [2] M. F. Atiyah and I. G. MacDonald, Introduction to commutative algebra, Addison-Wesley, Reading, Mass., 1969. MR 39 #4129. MR 0242802 (39:4129)
  • [3] B. S. Chwe and J. Neggers, On the extension of linearly independent subsets of free modules to bases, Proc. Amer. Math. Soc. 24 (1970), 466-470. MR 40 #5652. MR 0252432 (40:5652)
  • [4] -, Local rings with left vanishing radical, J. London Math. Soc. (2) 4 (1971), 374-378. MR 44 #6746. MR 0289558 (44:6746)
  • [5] T. Gulliksen, P. Ribenboim and T. M. Viswanathan, An elementary note on group-rings, J. Reine Angew. Math. 242 (1970), 148-162. MR 43 #372. MR 0274609 (43:372)
  • [6] J.-P. Serre, Représentations linéaires des groupes finis, Hermann, Paris, 1971. MR 50 #4718. MR 0352231 (50:4718)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 20C15

Retrieve articles in all journals with MSC: 20C15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0460439-2
Keywords: Finite p-group, character ring, Steinitz ring
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society