A PROPERTY OF FINITE p-GROUPS

SHOICHI KONDO

Abstract. Let $R(G)$ denote the character ring of a finite group G and let Λ be a commutative ring with identity. In this paper we show that if $G \neq \{1\}$, then $\Lambda \otimes Z R(G)$ has only one maximal ideal if and only if G is a p-group and Λ has only one maximal ideal m such that Λ/m is of characteristic p.

1. Let $R(G)$ be the character ring of a finite group G which is generated by complex irreducible characters χ of G over the ring Z of rational integers. Then $R(G)$ is a commutative Z-algebra and its identity is the principal character 1_G of G. The characters χ form a free Z-basis of $R(G)$.

Let Λ be a commutative ring with identity. We define $R_\Lambda(G) = \Lambda \otimes Z R(G) = \sum \chi \Lambda \chi$, in which Λ is embedded by $\Lambda 1_G$. Then $R_\Lambda(G)$ is a Λ-algebra with a Λ-free basis $\{\chi\}$. Let θ be a primitive $|G|$th root of 1 in the complex field, and let $A = \Lambda \otimes Z[\theta] = \Lambda[\theta]$. Then $R_\Lambda(G)$ is regarded as a subring of the direct product A^G, the ring of all functions of G which take their values in A. We note that A^G is integral over Λ, hence also over $R_\Lambda(G)$. This implies that any prime ideal of $R_\Lambda(G)$ is of the form

$$M(x, \mathfrak{p}) = \{ f \in R_\Lambda(G) | f(x) \in \mathfrak{p} \}$$

for some $x \in G$ and some prime ideal \mathfrak{p} of A (cf. §11.4 of [6]).

We can define an augmentation $\epsilon: R_\Lambda(G) \to \Lambda$ by $\epsilon(f) = f(1)$ for $f \in R_\Lambda(G)$, where 1 denotes the identity of G. Hence we see that $R_\Lambda(G)$ is Noetherian if and only if Λ is. Let m be a maximal ideal of Λ. Then $\epsilon^{-1}(m)$ is a maximal ideal of $R_\Lambda(G)$, and $\epsilon^{-1}(m) = m + \text{Ker } \epsilon$. It is clear that $\text{Ker } \epsilon$ is an ideal of $R_\Lambda(G)$ generated by $\{\chi - \chi(1)\}$.

We say that Λ is semilocal if Λ has only a finite number of maximal ideals. In particular, Λ is called a local ring if Λ has exactly one maximal ideal m, and the field Λ/m is called the residue field of Λ. We note that $R_\Lambda(G)$ is semilocal if and only if Λ is. Indeed, if m is a maximal ideal of Λ, then $R_\Lambda/m(G)$ is an Artin ring. Since $R_\Lambda/m(G)$ is isomorphic to $R_\Lambda(G)/mR_\Lambda(G)$, there exists only a finite number of maximal ideals of $R_\Lambda(G)$ lying over m. Hence if Λ is semilocal, then $R_\Lambda(G)$ is also. The converse follows from the fact that $R_\Lambda(G)$ is integral over Λ.

Now we shall prove

Received by the editors April 23, 1976.
Key words and phrases. Finite p-group, character ring, Steinitz ring.

© American Mathematical Society 1977

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
THEOREM 1. Suppose $G \neq \{1\}$. Then $R_\Lambda(G)$ is local if and only if G is a p-group and Λ is a local ring with residue field of characteristic p.

REMARK. The same result is shown in [5] for group rings of abelian groups.

Proof. First we assume that G is a p-group and Λ has only one maximal ideal m such that $\text{char}(\Lambda/m) = p$. Let $M = M(x, p)$ be any maximal ideal of $R_\Lambda(G)$, where $x \in G$ and p is a maximal ideal of A. Then $p \cap \Lambda = m$; hence $m \subseteq M$ and $pZ = p \cap Z$. Since the identity 1 is only one p-regular element of G, we see that

$$\chi(x) \equiv \chi(1) \pmod{p}$$

for all χ (cf. Exercise 2 of 10.3 in [6]). This implies that $\chi - \chi(1) \in M$, and so $\text{Ker } \epsilon \subseteq M$. Hence we have $M = \epsilon^{-1}(m)$, which shows that $\epsilon^{-1}(m)$ is the unique maximal ideal of $R_\Lambda(G)$.

Conversely, we assume that $R_\Lambda(G)$ is local. Using the augmentation ϵ we see that Λ is local. If m is the maximal ideal of Λ, then $\epsilon^{-1}(m)$ is the maximal ideal of $R_\Lambda(G)$.

In order to prove that G is a p-group, we note first that the order $|G|$ of G is a nonunit in Λ. Indeed, if $|G|$ is a unit in Λ, then $|G| - r_G^\Lambda$ is an idempotent of $R_\Lambda(G)$, where r_G^Λ denotes the regular character of G. Since $R_\Lambda(G)$ is local, we have $|G| - r_G^\Lambda = 0$ or 1. This is contrary to $G \neq \{1\}$. Hence there exists a prime divisor p of $|G|$ such that p is a nonunit in Λ, and therefore Λ/m is of characteristic p.

Now we shall prove that G is a p-group. Suppose on the contrary that it is not so. Then there exists an element $x \neq 1$ of G whose order is not a power of p. Let f be the character of G induced from the principal character 1_ρ of a p-Sylow subgroup P of G. Then $f(x) = 0$ and

$$f(1) = |G|/|P| \equiv 0 \pmod{p}.$$

Since f is a nonunit in $R_\Lambda(G)$, we have $f \in \epsilon^{-1}(m)$. This implies $f(1) \in m \cap Z = pZ$, a contradiction.

2. In [3], [4] Chwe and Neggers defined Steinitz rings and proved that Λ is a Steinitz ring if and only if Λ has only one maximal ideal m such that m is T-nilpotent. Allen and Neggers [1] applied this result to the case of group rings. As an analogue of the theorem of Allen and Neggers we prove the following result.

THEOREM 2. Suppose $G \neq \{1\}$. Then $R_\Lambda(G)$ is a Steinitz ring if and only if G is a p-group and Λ is a Steinitz ring whose characteristic is a power of p.

Proof. Suppose that $R_\Lambda(G)$ is a Steinitz ring. Using the augmentation ϵ we see that Λ is a Steinitz ring. Hence it follows from Theorem 1 that G is a p-group and $p \in m$, where m is the maximal ideal of Λ. Since m is T-nilpotent, we see that p is nilpotent, hence the characteristic of Λ is a power of p.

Conversely, suppose that G is a p-group and Λ is a Steinitz ring of $\text{char } \Lambda = p^\gamma$. Let m be the maximal ideal of Λ. Since Λ/m is of characteristic
p, it follows from Theorem 1 that $R_A(G)$ has only one maximal ideal $\varepsilon^{-1}(m)$. We must prove that $\varepsilon^{-1}(m)$ is T-nilpotent. Since $\varepsilon^{-1}(m) = m + \ker \varepsilon$, and since m is T-nilpotent, it suffices to show that $\ker \varepsilon$ is nilpotent.

Let α be the augmentation $A = \Lambda[\theta] \rightarrow \Lambda$. Then $\alpha^{-1}(m) = m + \ker \alpha$ is a maximal ideal of A and $\ker \alpha$ is a principal ideal of A generated by $1 - \theta$. Since $(1 - \theta)^{|G|} \equiv 0 \pmod{pA}$, and since $\text{char } A = p'$, we see that $(1 - \theta)^{|G|} = 0$, and so $\ker \alpha$ is nilpotent. Hence $\alpha^{-1}(m)$ is T-nilpotent and its elements are nilpotent.

Now we have seen in the proof of Theorem 1 that $\chi(x) - \chi(1)$ are in $\alpha^{-1}(m)$ for all $x \in G$ and all χ. Since G is finite, it follows that $\chi - \chi(1)$ are nilpotent elements of $R_A(G)$, hence $\ker \varepsilon$ is a nilpotent ideal. This completes the proof.

In the case of Noetherian rings, the above result gives the following

Corollary. Suppose $G \neq \{1\}$. Then $R_A(G)$ is an Artin local ring if and only if G is a p-group and Λ is an Artin local ring whose characteristic is a power of p.

References

Department of Mathematics, School of Education, Waseda University, Tokyo, Japan