HOLOMORPHIC FOLIATIONS AND THE KOBAYASHI METRIC

T. DUCHAMP AND M. KALKA

ABSTRACT. Here we extend the notion of the Kobayashi metric from complex manifolds to holomorphic foliations of smooth manifolds. This gives a notion of a hyperbolic foliation. We prove that a hyperbolic foliation of a compact manifold is compact and Hausdorff.

1. Introduction. Here we shall study foliations of \mathcal{C}^∞ manifolds which admit some additional structure. In particular suppose M is a smooth (= \mathcal{C}^∞) manifold and \mathcal{F} is a foliation on M. We call \mathcal{F} compact if each leaf of the foliation \mathcal{F} is compact. Now \mathcal{F} defines an obvious equivalence relation on M by $x \sim y \iff x$ and y lie on the same leaf. We can therefore consider the topological space M/\mathcal{F} with the quotient topology defined by the equivalence relation \sim. A natural question to ask about the quotient space is—when can one assert that it is Hausdorff? We call a foliation \mathcal{F} Hausdorff if this is the case.

It is known that codimension-1 foliations with compact leaves are Hausdorff [3]. For codimension ≥ 2 Reeb [8] has constructed examples of foliations with compact leaves which are not Hausdorff. Sullivan [9] has given an example of a codimension-4 foliation of $S^3 \times S^1 \times S^1$ with compact leaves which is not Hausdorff. There has, however, been much work aimed at giving conditions under which one can guarantee that a compact foliation is Hausdorff. In this direction we mention the work of Edwards, Millet, and Sullivan [3] and Epstein [4].

Here we assume that our foliation \mathcal{F} is holomorphic. This means that \mathcal{F} is given by a Haefliger cocycle with coefficients in the pseudogroup \mathbb{G}_{qc} of all local biholomorphic maps of \mathcal{C}^∞. In order to conclude that a holomorphic foliation is Hausdorff we need some additional restrictions. To formulate these we introduce a notion which may be of some independent interest. We adapt the notion of the Kobayashi metric [7] defined for complex manifolds to the case of smooth manifolds with a holomorphic foliation. Thus we have a pseudometric canonically associated with a foliation. We call a holomorphic foliation hyperbolic if this pseudometric gives positive distance to points on distinct leaves of \mathcal{F}. Our main result is the following theorem.
THEOREM. If \mathcal{F} is a holomorphic foliation on M, which is hyperbolic, then \mathcal{F} is Hausdorff. If M is compact then so is \mathcal{F}.

It is, perhaps, worth mentioning that if M is a compact hyperbolic complex manifold and \mathcal{F} is a holomorphic foliation that our metric is not the Kobayashi metric on M. Our metric measures distance only in directions normal to \mathcal{F}. Hence if M is compact hyperbolic and \mathcal{F} is the foliation consisting of the single leaf M, our metric is trivial. If, however, \mathcal{F} is a compact hyperbolic holomorphic foliation on M it is not hard to show that M/\mathcal{F} is a complex V-manifold and that the metric defined here is the Kobayashi metric on M/\mathcal{F}.

The plan of this paper is as follows: in §2 we will discuss holomorphic foliations, and prove a Newlander-Nirenberg Theorem for them. In §3, we will define the Kobayashi metric $d_\mathcal{F}$ for a foliation and prove our main theorem and some immediate corollaries.

2. Holomorphic foliations. Let M be a manifold and \mathcal{F} a C^∞, codimension-2 foliation. Recall that \mathcal{F} can be presented as a Haefliger cocycle by choosing a cover $\{U_a\}_{a \in \mathcal{A}}$ of M and submersions $f_a: U_a \to \mathbb{R}^q$ for each $a \in \mathcal{A}$ so that the restriction of \mathcal{F} to U_a is given by the fibers of f_a. There are local C^∞-diffeomorphisms of \mathbb{R}^q for each pair $a, \beta \in \mathcal{A}$ and $x \in U_a \cap U_\beta$, labeled $g^x_{a\beta}$ with the property that $f_a = g^x_{a\beta} \circ f_\beta$ near x and which satisfy the cocycle condition $g^x_{a\gamma} = g^x_{a\beta} \circ g^x_{\beta\gamma}$ for all $a, \beta, \gamma \in \mathcal{A}$ and $x \in U_a \cap U_\beta \cap U_\gamma$. We will use the notation $\{U_a, f_a, g^x_{a\beta}\}$ for a Haefliger cocycle defining \mathcal{F} as above and we will call the maps $g^x_{a\beta}$ transition maps.

Definition. A foliation, \mathcal{F}, presented as above is called holomorphic if the maps $g^x_{a\beta}$ are all local biholomorphisms of \mathbb{C}^q.

In defining the Kobayashi metric it will be important to have a notion of holomorphic mappings of holomorphic foliations. For the general case of (M_1, \mathcal{F}_1) and (M_2, \mathcal{F}_2) such a notion may be difficult to define (it is not clear to us at the moment what the "right" definition should be). However for the case of $f: (M_1, \mathcal{F}_1) \to (M_2, \mathcal{F}_2)$ where M_1 is a complex manifold and \mathcal{F}_1 is the foliation given by points, it is clear what the proper definition should be.

Definition. Suppose V is a complex manifold and \mathcal{F} is a holomorphic foliation of the C^∞-manifold M. Then we say that a map $\varphi: V \to M$ is holomorphic with respect to \mathcal{F} if for all a the map $f_a \circ \varphi: V \to \mathbb{C}^q$ is holomorphic.

Remarks. (1) Since the f_a are holomorphically related it is clear that this notion is well defined. (2) An example of a holomorphic mapping is the following: since \mathcal{F} is a holomorphic foliation there are local varieties V transverse to the leaves of the foliation. The embeddings $\varphi: V \to M$ are holomorphic maps.

There is another natural way to characterize holomorphic foliations. Let Q be the normal bundle of the foliation and $B \to M$ the bundle of frames of Q.

Definition. An almost complex structure on \mathcal{F} is a transverse $GL(q, \mathbb{C})$
reduction of B. (See [1] for a definition of transverse G reduction.)

An almost complex structure on \mathcal{F} determines an endomorphism $J: Q \to Q$ with $J^2 = -I$. J induces a splitting of Q^* as $Q^* = Q^{*(1,0)} \oplus Q^{*(0,1)}$ in the usual way.

Let $\Omega(Q^*)$ and $\Omega^{p,q}(Q^*)$ denote the spaces of sections of $\Lambda^p(Q^*)$ and $\Lambda^{p,q}(Q^*)$ respectively. We include for the sake of the completeness, the Newlander-Nirenberg Theorem for foliations which is a special case of the complex Frobenius Theorem. Vaisman [10] has proven a similar theorem in the case where M is a complex manifold.

Theorem 2.1. Let \mathcal{F} be an almost complex foliation. Suppose \mathcal{F} satisfies the integrability condition $d\Omega^{1,0}(Q^*) \subseteq \Omega^{1,0}(Q^*) \wedge \Omega^1(M)$ is satisfied. Then \mathcal{F} is holomorphic.

Proof. Let \mathcal{F} be presented as a cocycle $\{U_a, f_a, g_b^a\}$. We will obtain a new presentation for \mathcal{F}, $\{U_a', f_a', g_b'^a\}$, in which the transition maps are local biholomorphisms.

It follows from [2, Definition 1.6(v) and Proposition 2.6] that the almost complex structure J induces unique almost complex structures J_a on the sets $V_a = f(U_a)$ and that the transition maps g_b^a preserve these structures. The almost complex structure, J_a, is characterised by the fact that $f_a^*(\Omega^{p,q}(V_a)) \subseteq \Omega^{p,q}(Q^*|U_a)$ for all $p, q > 0$.

We claim that the almost complex structures J_a are all integrable. To see this suppose that J_a is not integrable then by the classical Newlander-Nirenberg Theorem there is a 1-form $\phi \in \Omega^{1,0}(V_a)$ with $d\phi = \tau + \phi$ where $\phi \in \Omega^{0,2}(V_a)$ and $\tau \in \Omega^1(V_a)$ and further $\phi \neq 0$. But then $f_a^*\phi \in \Omega^{1,0}(Q^*|V_a)$ and $d(f_a^*\phi) \notin \Omega^{1,0}(Q^*|V_a) \wedge \Omega^1(Q^*)$ contradicting the integrability condition of the theorem.

By the above result it is clear that we can refine the cover $\{U_a\}_{a \in \mathcal{A}}$ by a cover $\{U_{a'}\}_{a' \in \mathcal{A}'}$ so that for $U_{a'} \subseteq U_a$ there is a biholomorphism, $h_a: f_a(U_{a'}) \to \mathbb{C}^\nu$. Therefore, the cocycle defined by $f_{a'} = h_{a'} \circ f_a$ and $g_{b'}^a = h_{b'}^* \circ g_{a'}^b \circ h_{a'}^{-1}$ for $U_{a'} \subseteq U_a$ and $U_{b'} \subseteq U_b$ makes \mathcal{F} into a holomorphic foliation.

3. **The Kobayashi metric.** We now turn to a definition of the Kobayashi metric of a foliation. Our definition will be an adaptation of Kobayashi's definition for the case of a complex manifold.

Let $D_R = \{z \in \mathbb{C} : |z| < R\}$ be the disc of radius R in \mathbb{C}, and let $p, q \in M$.

Definition. (1) \[d_{\mathbb{C}}(p, q) = \inf \frac{1}{2} \log((R + 1)/(R - 1)) \] where the infimum is taken over all $R > 1$ such that there is a holomorphic map $f: D_R \to (M, \mathcal{F})$ with $f(0) = p$, $f(1) = q$.

(2) \[d_{\mathcal{F}}(p, q) = \inf \sum_{i=0}^{k} d_{\mathbb{C}}(p_i, p_{i+1}) \] where the infimum is taken over all finite sequences $p = p_0, p_1, \ldots, p_k = q$.

Remarks. This is Kobayashi's definition verbatim. What is different is our
notion of holomorphic mapping. As in the case of the usual Kobayashi metric, one easily verifies that

(i) \(d_{\mathcal{F}}(p, q) = 0 \),
(ii) \(d_{\mathcal{F}}(p, q) = d_{\mathcal{F}}(q, p) \),
(iii) \(d_{\mathcal{F}}(p_1, p_2) \leq d_{\mathcal{F}}(p_1, p_3) + d_{\mathcal{F}}(p_2, p_3) \),
(iv) \(d_{\mathcal{F}}: \mathcal{M} \times \mathcal{M} \to [0, \infty) \) is continuous.

Our next proposition gives the distance decreasing property which we shall require.

Proposition 3.1. Suppose \(\mathcal{V} \) is a complex manifold and \(f: \mathcal{V} \to (M, \mathcal{F}) \) is holomorphic with respect to \(\mathcal{F} \). Let \(d_{\mathcal{V}} \) denote the Kobayashi metric on \(\mathcal{V} \). Then
\[
\forall \xi \in \mathcal{V} d_{\mathcal{V}}(f(\xi), f(\eta)) \leq d_{\mathcal{V}}(\xi, \eta).
\]

Proof. This follows, trivially, from the definition of \(d_{\mathcal{F}} \) and \(d_{\mathcal{V}} \) and the fact that if \(\varphi: D \to \mathcal{V} \) is holomorphic then so is \(f \circ \varphi \).

Proposition 3.2. Suppose \((M, \mathcal{F}) \) is a holomorphic foliation. Suppose \(p, q \in M \) are on the same leaf of \(\mathcal{F} \). Then \(d_{\mathcal{F}}(p, q) = 0 \).

Proof. By Proposition 3.1, the fact that \(d_{\mathcal{F}} \equiv 0 \) and the triangle inequality it suffices to show that two points on the same leaf can be connected by a chain of holomorphic images of \(\mathbb{C} \) in \(M \). But any smooth map \(\varphi: \mathbb{C} \to M \) whose image lies on a leaf of \(\mathcal{F} \) is holomorphic, since its projection to \(\mathbb{C} \) under any \(f_{\alpha} \) defining \(\mathcal{F} \) is a point.

The result now is easy: connect \(p \) to \(q \) by diffeomorphic copies of images of \(\mathbb{C} \). This can always be done.

Corollary 3.3. Let \((M, \mathcal{F}) \) be a holomorphic foliation and suppose that \(x, x' \in L \) and \(y, y' \in S \) where \(L \) and \(S \) are leaves of \(\mathcal{F} \). Then \(d_{\mathcal{F}}(x, y) = d_{\mathcal{F}}(x', y') \).

Proof. We have the inequality \(d_{\mathcal{F}}(x, y) \leq d_{\mathcal{F}}(x, x') + d_{\mathcal{F}}(x', y') + d_{\mathcal{F}}(y, y') \). But the last term is just \(d_{\mathcal{F}}(x', y') \). Similarly, \(d_{\mathcal{F}}(x', y') \leq d_{\mathcal{F}}(x, y) \).

Definition. A holomorphic foliation \((M, \mathcal{F}) \) is called hyperbolic if whenever \(x, y \) are on different leaves \(d_{\mathcal{F}}(x, y) > 0 \).

In order to prove our theorem on hyperbolic foliations we will require the following result, Proposition 3.4 which follows from Lemma 3.5.

Proposition 3.4. If \(M \) is a compact manifold and \(\mathcal{F} \) is a foliation all of whose leaves are closed in \(M \), then all leaves of \(\mathcal{F} \) are compact manifolds.

Lemma 3.5. Let \(\mathcal{F} \) be a foliation of \(M \) and \(N \to M \) a leaf. Suppose that \(f(N) \) is a compact subset of \(M \), then the manifold \(N \) is compact.

Proof. Suppose that \(N \) is not compact. Then there is an infinite sequence of points \(p_i \) of \(N \) having no limit point in \(N \). Let \(r_i = f(p_i) \). Since \(f(N) \) is compact we may assume that \(r_i \to r \) in \(f(N) \). Pick an open set \(U \subseteq M \) such that \(r \in U \), and a chart \(g: U \to \mathbb{R}^n = \mathbb{R}^p \times \mathbb{R}^q = \{(x, y) | x \in \mathbb{R}^p, y \in \mathbb{R}^q \} \) so that on \(U \) the leaves of \(\mathcal{F} \) are given by the planes \(y = \text{constant} \).
We may assume that an infinite number of the y-coordinates of the points r_i are distinct, for otherwise the sequence p_i would have a limit point in U.

Let \mathbb{R}^s be identified with $\{0\} \times \mathbb{R}^s$ and let $X = f(N) \cap \mathbb{R}^s$. By the above remark X is infinite and it is closed since $f(N)$ is closed. We may assume that $r_i, r \in X$. Let r' be any other point of X. We claim that r' is an accumulation point of X. To see this, consider a path in $f(N)$ from r to r'. This induces a local homeomorphism h of \mathbb{R}^s taking r to r'. Since $r \to r$ we have $h(r_i) \to h(r) = r'$ and $h(r_i) \in X$. Therefore every point of X is an accumulation point of X. An elementary argument shows that every closed subset of \mathbb{R}^s with the property that every point is an accumulation point is uncountable. This means that $f(N) \cap U$ has an uncountable number of connected components since the components of $f(N) \cap U$ are in 1-1 correspondence with the points of X. Pulling back to N we see that N has an uncountable number of pairwise disjoint, open sets. But N is second countable. This contradiction proves the lemma.

Lemma 3.6. Let \mathcal{F} be a hyperbolic foliation on M. Then the leaf space M/\mathcal{F} is Hausdorff.

Proof. Let $p \in M$ and let $B(p, \varepsilon) = \{x \in M|d_{\mathcal{F}}(p, x) < \varepsilon\}$. Since $d_{\mathcal{F}}$ is continuous $B(p, \varepsilon)$ is open. Further, by Corollary 3.3, $B(p, \varepsilon)$ is a union of leaves of \mathcal{F}. Let N_0 and N_1 be two leaves of \mathcal{F}. To show that M/\mathcal{F} is Hausdorff we must find disjoint open sets O_0 and O_1 containing N_0 and N_1 respectively, and which are the union of leaves.

Let $\delta = d_{\mathcal{F}}(N_0, N_1).$ Since \mathcal{F} is hyperbolic $\delta > 0$.

Let $p_0 \in N_0, p_1 \in N_1$. Then the required sets are $O_0 = B(p_0, \delta/2)$ and $O_1 = B(p_1, \delta/2)$.

Combining Proposition 3.4 and Lemma 3.6 we have the following.

Theorem 3.7. Every hyperbolic foliation of a compact manifold is compact and Hausdorff.

Remark. By Epstein [4] and Theorem 3.7 a hyperbolic foliation of a compact manifold is locally given by a Seifert fibration. From this it follows that the leaf space has the structure of a hyperbolic V manifold.

Definition. A Hermitian foliation is a holomorphic foliation with a transverse J-structure, compatible with the homomorphic structure.

Proposition 3.8. Let \mathcal{F} be a complex, codimension-q, hyperbolic foliation of a compact manifold M. Then \mathcal{F} is Hermitian.

Proof. Hamilton [5] has shown that every compact Hausdorff foliation is Riemannian. A Riemannian, holomorphic foliation is a $U(q)$-foliation.

Proposition 3.9. If \mathcal{F} is a hyperbolic foliation of a compact manifold M, then all secondary invariants defined by the characteristic homomorphism
\[\Delta_\ast : H^1 \left(W(\mathfrak{gl}(q, \mathbb{C}), U(q))_2 q \right) \to H_{DR}^1 (M, \mathbb{R}) \]

are trivial.

PROOF. This is immediate from Proposition 3.9 and Theorem 4.52 of Kamber-Tondeur [6].

BIBLIOGRAPHY

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112 (Current address of T. Duchamp)

Current address (M. Kalka): Department of Mathematics, Johns Hopkins University, Baltimore, Maryland 21205