ON NONLINEAR VARIATIONAL INEQUALITIES

E. TARAFDAR

Abstract. In this note we have given a direct proof of the result which states that if K is a compact convex subset of a linear Hausdorff topological space E over the reals and T is a monotone and hemicontinuous (nonlinear) mapping of K into E^*, then there is a $u_0 \in K$ such that $(T(u_0), v - u_0) > 0$ for all $v \in K$.

Introduction. Browder [1] has proved that if K is a closed convex subset of a reflexive Banach space E such that $0 \in K$ and T is a monotone and hemicontinuous nonlinear mapping of K into E^* satisfying the coercivity condition, then there is a $u_0 \in K$ such that $(T(u_0), v - u_0) > 0$ for all $v \in K$. Hartman and Stampacchia [3] have independently proved a similar result and made applications to second order nonlinear elliptic equations. This result with $c(u) = 0$ (see Theorem 1.1 of [3]) is a special case of Browder's result [1]. With the closed convex subset K of E as assumed in [3], the coercivity condition on T reduces the problem to proving the existence of u_0 satisfying the above inequality in a closed bounded convex subset of K (see remark following Theorem 1.1 and Lemma 2.2 in [3]). Thus it is of interest to prove the above result in a weakly compact convex subset of an arbitrary Banach space. This would then contain Theorem 1.1 in [3] and the result of [1] as special cases. In fact the main object of this paper is to prove this result in a compact convex subset of a linear topological space over the reals without the coercivity condition on T. The techniques used in [1] and [3] are more or less the same, 'to prove the result in a finite dimensional case and then apply a limiting procedure'. We will give a direct proof of our result by applying a generalized version of a fixed point theorem of Browder [2].

The author is grateful to Dr. H. B. Thompson for discussions on this topic.

We first prove a slight generalization of a fixed point theorem of Browder [2, Theorem 1, p. 285] which will suit our purpose.

Theorem 1. Let K be a nonempty compact convex subset of a Hausdorff linear topological space E. Let T be a multivalued mapping of K into 2^K such that

(i) for each $x \in K$, $T(x)$ is a nonempty convex subset of K;
(ii) for each $y \in K$, $T^{-1}(y) = \{x \in K : y \in T(x)\}$ contains an open subset
O_y of K (O_y may be empty);
(iii) \(\bigcup \{ O_y : y \in K \} = K \).

Then there exists a point \(x_0 \in K \) such that \(x_0 \in T(x_0) \).

Proof. Although the proof is similar to that in [2], we include it for the sake of completeness. Since K is compact, by (iii) there exists a finite family \(\{ y_1, y_2, \ldots, y_n \} \) such that \(K = \bigcup_{i=1}^n O_{y_i} \). Let \(\{ f_1, f_2, \ldots, f_n \} \) be a partition of unity corresponding to this finite covering, i.e. each \(f_i, i = 1, 2, \ldots, n, \) is a real valued continuous function defined on K such that \(f_i \) vanishes outside \(O_{y_i}, 0 < f_i(x) < 1, \) for all \(x \in K \) and \(\sum_{i=1}^n f_i(x) = 1 \) for each \(x \in K \).

We define a mapping \(p : K \to K \) by

\[
p(x) = \sum_{i=1}^n f_i(x) y_i, \quad x \in K.
\]

Obviously \(p \) maps K into K and is continuous. Also for each \(k \) with \(f_k(x) \neq 0, x \in O_{y_k} \subseteq T^{-1}(y_k), \) i.e. \(y_k \in T(x) \). As \(T(x) \) is convex, this implies that \(p(x) \in T(x) \) for each \(x \in K \).

Let \(S \) be the finite dimensional simplex spanned by \(y_1, y_2, \ldots, y_n \). Then clearly \(p \) maps \(S \) into \(S \). Also, since \(E \) is Hausdorff linear topological space, the topology on \(S \) induced by the topology in \(E \) is Euclidean. Hence by the Brouwer fixed point theorem, there is a point \(x_0 \in S \) such that \(x_0 = p(x_0) \in T(x_0) \).

Let \(K \) be a subset of a linear topological space \(E \) over the reals and \(T \) a single valued (nonlinear) mapping of \(K \) into \(E^* \). We say \(T \) is monotone provided \((T(u) - T(v), u - v) > 0 \) for all \(u, v \in K \). Here \((\cdot, \cdot) \) denotes the pairing between \(E^* \) and \(E \).

\(T : K \to E^* \) is said to be hemicontinuous if \(T \) is continuous from the line segments in \(K \) to the weak topology of \(E^* \).

A point \(u_0 \in K \) is said to satisfy the variational inequality if

\[
(T(u_0), v - u_0) > 0 \quad \text{for all } v \in K . . .
\]

\(u_0 \) is also called a solution of (1).

Lemma. If \(K \) is a convex subset of a linear Hausdorff topological space \(E \), and \(T \) is a single valued mapping of \(K \) into \(E^* \) such that \(T \) is monotone and hemicontinuous, then \(u_0 \) is a solution of (1) if and only if \(u_0 \) is a solution of

\[
(T(v), v - u_0) > 0 \quad \text{for all } v \in K . . .
\]

Proof. The proof of this lemma on a Banach space in [1, Lemma 1] or in [3, Lemma 2.3] also holds here. If \(u_0 \) satisfies (1), then an application of monotonicity shows that \(u_0 \) satisfies (2). Now suppose that \(u_0 \) satisfies (2). As in [1] and [3] we employ a device of Minty [4]. Let \(\epsilon \) be an arbitrary point of \(K \). Then since \(K \) is convex, \(\epsilon = (1 - \iota)u_0 + \iota v \in K \) for \(0 < \iota < 1 \). By (2) we have
\[0 < (T(v), t(v - u_0)) = t(T(v), v - u_0). \]

Since \(t > 0 \), \((T(v), t(v - u_0)) > 0 \).

Now letting \(t \to 0 \) and using hemicontinuity of \(T \), \(T(v) \to T(u_0) \) weakly in \(E^* \). Hence \((T(u_0), v - u_0) \geq 0 \).

Remark. We note that in the proof of the first part the convexity of \(K \) is not needed. In fact, if \(T: K \to E^* \) is a monotone mapping of any set \(K \subseteq E \) into \(E^* \), then given \(u \in K \), the set \(\{v: (T(u), v - u) > 0\} \subseteq \{v: (T(v), v - u) > 0\} \).

This follows from the definition of monotonicity, i.e., \((T(v), v - u) > (T(u), v - u) \).

Theorem 2. Let \(K \) be compact convex subset of a linear Hausdorff topological space \(E \). Let \(T \) be a (single valued) monotone (nonlinear) mapping of \(K \) into \(E^* \). Suppose further that

\[(*) \text{ for each } v \in K \text{ there exists } u \in K \text{ such that } (T(u), u - v) < 0. \]

Then there is a solution \(u_0 \) of (1), i.e. there is \(u_0 \in K \) such that \((T(u_0), v - u_0) > 0 \) for all \(v \in K \).

Proof. We assume that there is no solution of (1). Then for each \(u \in K \), the set \(\{v \in K: (T(u), v - u) < 0\} \) is nonempty. We define a multivalued mapping \(F: K \to 2^K \) by

\[F(u) = \{v \in K: (T(u), v - u) < 0\}. \]

\(F(u) \) is nonempty and clearly convex for each \(u \in K \). We now consider

\[F^{-1}(u) = \{v \in K: u \in F(v)\} = \{v \in K: (T(v), u - v) < 0\}. \]

For each \(u \in K, [F^{-1}(u)]^c \) is the complement of \(F^{-1}(u) \) in

\[K = \{v: (T(v), u - v) > 0\} \subseteq \{v: (T(u), v - u) > 0\} \]

by monotonicity of \(T = B(u) \), say. Obviously \(B(u) \) is a closed and convex subset of \(K \). Thus the complement of \(B(u) = [B(u)]^c \) is open in \(K \). Since \([F^{-1}(u)]^c \subseteq B(u) \), it follows that \([B(u)]^c \subseteq F^{-1}(u) \). Thus for each \(u \in K \), \(F^{-1}(u) \) contains an open set \([B(u)]^c \) of \(K \).

Now from the hypothesis that for each \(v \in K \), there exists \(u \in K \) such that \((T(u), u - v) < 0 \), it follows that \(\bigcup \{[B(u)]^c, u \in K\} = K \). Thus \(F \) satisfies all the conditions of our Theorem 1. Hence there exists a point \(w \in K \) such that \(w \in F(w) \), i.e. \(0 > (T(w), w - w) = 0 \), which is impossible.

Corollary. Let \(K \) be a compact convex subset of a linear Hausdorff topological space \(E \). Let \(T \) be a monotone and hemicontinuous (nonlinear) mapping of \(K \) into \(E^* \). Then there is a solution \(u_0 \) of (1), i.e., there is \(u_0 \in K \) such that \((T(u_0), v - u_0) > 0 \) for all \(v \in K \).

Proof. If \((*) \) of Theorem 2 holds, then we have a solution \(u_0 \) of (1) by Theorem 2. If \((*) \) does not hold, then it means precisely that there is \(u_0 \in K \) such that \((T(u), u - u_0) > 0 \) for all \(u \in K \). Since \(T \) is hemicontinuous, the lemma implies that \((T(u_0), u - u_0) > 0 \) for all \(u \in K \), i.e. \(u_0 \) is a solution of the variational inequality.
Remark. It has already been pointed out in the introduction that our corollary contains the result of [1] and Theorem 1.1 of [3] as a special case. It is also worth noting that

(i) it follows from the proof of our theorem that we can replace the monotonicity condition by a weaker condition that for each \(u \in K \),
\[
\{ v: (T(v), u - v) \geq 0 \} \subseteq \{ v: (T(u), u - v) \geq 0 \};
\]

(ii) in case of a locally convex Hausdorff topological space \(E \), it does not matter whether we assume \(K \) to be compact or weakly compact. The corollary still remains true as \(T \) remains hemicontinuous in either case.

References

Department of Mathematics, University of Queensland, St. Louis, Brisbane, Queensland, Australia 4067