Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Generators for $ G$ bordism

Author: R. Paul Beem
Journal: Proc. Amer. Math. Soc. 67 (1977), 335-343
MSC: Primary 57D85
MathSciNet review: 0454993
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We show that a certain collection of G manifolds generates $ {N_\ast}(G)$ as an algebra over $ {N_\ast}$, the unoriented bordism ring, where G is finite abelian and of order not divisible by four.

References [Enhancements On Off] (What's this?)

  • [1] J. C. Alexander, The bordism ring of manifolds with involutions, Proc. Amer. Math. Soc. 31 (1972), 536-542. MR 0290379 (44:7563)
  • [2] P. E. Connor and E. E. Floyd, Maps of odd period, Ann. of Math. (2) 84 (1966), 132-156. MR 0203738 (34:3587)
  • [3] R. J. Rowlett, Torsion in the bordism of oriented involutions, Trans. Amer. Math. Soc. 231 (1977), 541-548. MR 0445521 (56:3861)
  • [4] R. E. Stong, Unoriented bordism and actions of finite groups, Mem. Amer. Math. Soc. No. 103 (1970). MR 0273645 (42:8522)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 57D85

Retrieve articles in all journals with MSC: 57D85

Additional Information

Keywords: Equivariant bordism
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society