Extremal properties of real axially symmetric harmonic functions in

Author:
Peter A. McCoy

Journal:
Proc. Amer. Math. Soc. **67** (1977), 248-252

MSC:
Primary 31B05; Secondary 35C10

DOI:
https://doi.org/10.1090/S0002-9939-1977-0457754-5

MathSciNet review:
0457754

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The set consists of all real harmonic functions defined by which are regular in , the open unit sphere about the origin . Two problems arise concerning and a subset whose members *U* have the first coefficients specified. (1) For , determine as the limit of a monotone sequence of constants which can be computed algebraically. (2) Find and the constant

**[1]**R. Askey,*Orthogonal polynomials and special functions*, Regional Conf. Ser. in Appl. Math., SIAM, Philadelphia, Pennsylvania, 1975. MR**0481145 (58:1288)****[2]**S. Bergman,*Integral operators in the theory of linear partial differential equations*, Ergebnisse der Math. und Grenzgebiete, Heft 23, Springer-Verlag, New York, 1961. MR**0141880 (25:5277)****[3]**P. Dienes,*The Taylor series*, Dover, New York, 1957.**[4]**R. P. Gilbert,*Constructive methods for elliptic equations*, Lecture Notes in Math., vol. 365, Springer-Verlag, Berlin and New York, 1974. MR**0447784 (56:6094)****[5]**-,*Function theoretic methods in partial differential equations*, Academic Press, New York, 1969. MR**0241789 (39:3127)****[6]**U. Grenander and G. Szegö,*Toeplitz forms and their applications*, Univ. of California Press, Berkeley, Calif., 1958. MR**0094840 (20:1349)****[7]**M. Marden,*Geometry of polynomials*, Math. Surveys, no. 3, Amer. Math. Soc., Providence, Rhode Island, 1966. MR**0225972 (37:1562)****[8]**-,*Value distribution of harmonic polynomials in several real variables*, Trans. Amer. Math. Soc.**159**(1971), 137-154. MR**0279323 (43:5046)****[9]**P. A. McCoy,*Generalized axisymmetric potentials*, J. Approximation Theory**15**(1975), 256-266. MR**0390261 (52:11087)****[10]**-,*On the zeros of generalized axially symmetric potentials*, Proc. Amer. Math. Soc.**61**(1976), 54-58. MR**0477095 (57:16639)****[11]**M. Tsuji,*Potential theory in modern function theory*, Mauruzen, Tokyo, 1958. MR**0114894 (22:5712)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
31B05,
35C10

Retrieve articles in all journals with MSC: 31B05, 35C10

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0457754-5

Keywords:
Bergman and Gilbert's integral operators,
extremal properties of harmonic functions,
Carathéodory-Fejér theorems

Article copyright:
© Copyright 1977
American Mathematical Society