Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On James' quasi-reflexive Banach space


Authors: P. G. Casazza, Bor Luh Lin and R. H. Lohman
Journal: Proc. Amer. Math. Soc. 67 (1977), 265-271
MSC: Primary 46B15
DOI: https://doi.org/10.1090/S0002-9939-1977-0458129-5
MathSciNet review: 0458129
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the James' space J, there exist complemented reflexive subspaces which are not uniformly convexifiable and there are uncountably many mutually nonequivalent unconditional basic sequences in J each of which spans a complemented subspace of J. If $ \{ {y_n}\} $ is a block basic sequence with constant coefficients of the unit vector basis of J, then its closed linear span $ [{y_n}]$ is complemented in J and the space $ [{y_n}]$ is either isomorphic to J or to $ {(\Sigma _{n = 1}^\infty {J_{{t_n}}})_{{l_2}}}$ for some $ \{ {t_n}\} $ where $ {J_n} = [{e_1},{e_2}, \ldots ,{e_n}]$.


References [Enhancements On Off] (What's this?)

  • [1] Z. Altshuler, P. G. Casazza and Bor-Luh Lin, On symmetric basic sequences in Lorentz sequence spaces, Israel J. Math. 15 (1973), 140-155. MR 0328553 (48:6895)
  • [2] P. G. Casazza and R. H. Lohman, A general construction of spaces of the type of R. C. James, Canad. J. Math. 27 (1975), 1263-1270. MR 0399817 (53:3659)
  • [3] W. J. Davis, W. B. Johnson and J. Lindenstrauss, The $ l_1^n$ problem and degree of non-reflexivity, Studia Math. 55 (1976), 123-140. MR 0458126 (56:16329)
  • [4] I. S. Edelstein and B. S. Mityagin, Homotopy type of linear groups of two classes of Banach spaces, Functional Anal. Appl. 4 (1970), 221-231. MR 0341526 (49:6274d)
  • [5] D. P. Giesy and R. C. James, Uniformly non-$ {l^{(1)}}$ and B-convex Banach spaces, Studia Math. 48 (1973), 61-69. MR 0333669 (48:11994)
  • [6] N. I. Gurarii and V. I. Gurarii, On bases in uniformly convex and uniformly smooth Banach spaces, Izv. Akad. Nauk SSSR Ser. Mat. 35 (1971), 210-215. MR 0283549 (44:780)
  • [7] R. Herman and R. Whitley, An example concerning reflexivity, Studia Math. 28 (1967), 289-294. MR 0215056 (35:5900)
  • [8] R. C. James, Bases and reflexivity of Banach spaces, Ann. of Math. 52 (1950), 518-527. MR 0039915 (12:616b)
  • [9] -, A non-reflexive Banach space isometric with its second conjugate space, Proc. Nat. Acad. Sci. U. S. A. 37 (1951), 174-177. MR 0044024 (13:356d)
  • [10] -, A separable somewhat reflexive Banach space with separable dual, Bull. Amer. Math. Soc. 80 (1974), 738-743. MR 0417763 (54:5811)
  • [11] -, A nonreflexive Banach space that is uniformly nonoctahedral, Israel J. Math. 18 (1974), 145-155. MR 0355538 (50:8012)
  • [12] J. Lindenstrauss and C. Stegall, Examples of separable spaces which do not contain $ {l_1}$ and whose duals are non-separable, Studia Math. 54 (1975), 81-105. MR 0390720 (52:11543)
  • [13] I. Singer, Bases in Banach spaces. I, Springer-Verlag, Berlin and New York, 1970. MR 0298399 (45:7451)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46B15

Retrieve articles in all journals with MSC: 46B15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0458129-5
Keywords: Basic sequences, projections, reflexive subspaces
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society