On James' quasi-reflexive Banach space

Authors:
P. G. Casazza, Bor Luh Lin and R. H. Lohman

Journal:
Proc. Amer. Math. Soc. **67** (1977), 265-271

MSC:
Primary 46B15

DOI:
https://doi.org/10.1090/S0002-9939-1977-0458129-5

MathSciNet review:
0458129

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In the James' space *J*, there exist complemented reflexive subspaces which are not uniformly convexifiable and there are uncountably many mutually nonequivalent unconditional basic sequences in *J* each of which spans a complemented subspace of *J*. If is a block basic sequence with constant coefficients of the unit vector basis of *J*, then its closed linear span is complemented in *J* and the space is either isomorphic to *J* or to for some where .

**[1]**Z. Altshuler, P. G. Casazza and Bor-Luh Lin,*On symmetric basic sequences in Lorentz sequence spaces*, Israel J. Math.**15**(1973), 140-155. MR**0328553 (48:6895)****[2]**P. G. Casazza and R. H. Lohman,*A general construction of spaces of the type of R. C. James*, Canad. J. Math.**27**(1975), 1263-1270. MR**0399817 (53:3659)****[3]**W. J. Davis, W. B. Johnson and J. Lindenstrauss,*The**problem and degree of non-reflexivity*, Studia Math.**55**(1976), 123-140. MR**0458126 (56:16329)****[4]**I. S. Edelstein and B. S. Mityagin,*Homotopy type of linear groups of two classes of Banach spaces*, Functional Anal. Appl.**4**(1970), 221-231. MR**0341526 (49:6274d)****[5]**D. P. Giesy and R. C. James,*Uniformly non*-*and B-convex Banach spaces*, Studia Math.**48**(1973), 61-69. MR**0333669 (48:11994)****[6]**N. I. Gurarii and V. I. Gurarii,*On bases in uniformly convex and uniformly smooth Banach spaces*, Izv. Akad. Nauk SSSR Ser. Mat.**35**(1971), 210-215. MR**0283549 (44:780)****[7]**R. Herman and R. Whitley,*An example concerning reflexivity*, Studia Math.**28**(1967), 289-294. MR**0215056 (35:5900)****[8]**R. C. James,*Bases and reflexivity of Banach spaces*, Ann. of Math.**52**(1950), 518-527. MR**0039915 (12:616b)****[9]**-,*A non-reflexive Banach space isometric with its second conjugate space*, Proc. Nat. Acad. Sci. U. S. A.**37**(1951), 174-177. MR**0044024 (13:356d)****[10]**-,*A separable somewhat reflexive Banach space with separable dual*, Bull. Amer. Math. Soc.**80**(1974), 738-743. MR**0417763 (54:5811)****[11]**-,*A nonreflexive Banach space that is uniformly nonoctahedral*, Israel J. Math.**18**(1974), 145-155. MR**0355538 (50:8012)****[12]**J. Lindenstrauss and C. Stegall,*Examples of separable spaces which do not contain**and whose duals are non-separable*, Studia Math.**54**(1975), 81-105. MR**0390720 (52:11543)****[13]**I. Singer,*Bases in Banach spaces*. I, Springer-Verlag, Berlin and New York, 1970. MR**0298399 (45:7451)**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
46B15

Retrieve articles in all journals with MSC: 46B15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1977-0458129-5

Keywords:
Basic sequences,
projections,
reflexive subspaces

Article copyright:
© Copyright 1977
American Mathematical Society