Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



A tree argument in infinitary model theory

Authors: V. Harnik and M. Makkai
Journal: Proc. Amer. Math. Soc. 67 (1977), 309-314
MSC: Primary 02H10; Secondary 02B25
MathSciNet review: 0472506
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A tree argument is used to show that any counterexample to Vaught's conjecture must have an uncountable model. A similar argument replaces the use of forcing by Burgess in a theorem on $ \sum _1^1$ equivalence relations.

References [Enhancements On Off] (What's this?)

  • [1] J. P. Burgess, Infinitary languages and descriptive set theory, Ph. D. Thesis, Univ. of California, Berkeley, 1974.
  • [2] V. Harnik and M. Makkai, Some remarks on Vaught's conjecture, J. Symbolic Logic 40 (1975), 300-301 (abstract).
  • [3] L. Harrington, A powerless proof of a theorem of Silver (manuscript).
  • [4] H. Jerome Keisler, Model theory for infinitary logic. Logic with countable conjunctions and finite quantifiers, North-Holland Publishing Co., Amsterdam-London, 1971. Studies in Logic and the Foundations of Mathematics, Vol. 62. MR 0344115
  • [5] M. Makkai, An “admissible” generalization of a theorem on countable Σ¹₁ sets of reals with applications, Ann. Math. Logic 11 (1977), no. 1, 1–30. MR 0491142
  • [6] -, Admissible sets and infinitary logic, Handbook of Logic (J. K. Barwise, editor), North-Holland, Amsterdam, 1977.
  • [7] Michael Morley, The number of countable models, J. Symbolic Logic 35 (1970), 14–18. MR 0288015
  • [8] -, Applications of topology to $ {L_{{\omega _1}\omega }}$, Proc. Sympos. Pure Math., vol. 25, Amer. Math. Soc., Providence, R. I., 1973, pp. 233-240.
  • [9] J. P. Ressayre, Models with compactness properties relative to an admissible language, Ann. Math. Logic 11 (1977), no. 1, 31–55. MR 0465849
  • [10] J. Silver, Any $ \prod _1^1$ equivalence relation over $ {2^\omega }$ has either $ {2^{{\aleph _0}}}$ or $ \leqslant {\aleph _0}$ equivalence classes (manuscript).
  • [11] Robert Vaught, Descriptive set theory in 𝐿_{𝜔}_{1𝜔}, Cambridge Summer School in Mathematical Logic (Cambridge, England, 1971), Springer, Berlin, 1973, pp. 574–598. Lecture Notes in Math., Vol. 337. MR 0409106
  • [12] John P. Burgess, Equivalences generated by families of Borel sets, Proc. Amer. Math. Soc. 69 (1978), no. 2, 323–326. MR 0476524, 10.1090/S0002-9939-1978-0476524-6

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 02H10, 02B25

Retrieve articles in all journals with MSC: 02H10, 02B25

Additional Information

Article copyright: © Copyright 1977 American Mathematical Society