Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

A tree argument in infinitary model theory


Authors: V. Harnik and M. Makkai
Journal: Proc. Amer. Math. Soc. 67 (1977), 309-314
MSC: Primary 02H10; Secondary 02B25
DOI: https://doi.org/10.1090/S0002-9939-1977-0472506-8
MathSciNet review: 0472506
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A tree argument is used to show that any counterexample to Vaught's conjecture must have an uncountable model. A similar argument replaces the use of forcing by Burgess in a theorem on $ \sum _1^1$ equivalence relations.


References [Enhancements On Off] (What's this?)

  • [1] J. P. Burgess, Infinitary languages and descriptive set theory, Ph. D. Thesis, Univ. of California, Berkeley, 1974.
  • [2] V. Harnik and M. Makkai, Some remarks on Vaught's conjecture, J. Symbolic Logic 40 (1975), 300-301 (abstract).
  • [3] L. Harrington, A powerless proof of a theorem of Silver (manuscript).
  • [4] H. J. Keisler, Model theory for infinitary logic, North-Holland, Amsterdam, 1971. MR 0344115 (49:8855)
  • [5] M. Makkai, An ``admissible'' generalization of a theorem on countable $ \sum _1^1$ sets of reals with applications, Ann. of Math. Logic 11 (1977), 1-30. MR 0491142 (58:10408)
  • [6] -, Admissible sets and infinitary logic, Handbook of Logic (J. K. Barwise, editor), North-Holland, Amsterdam, 1977.
  • [7] M. Morley, The number of countable models, J. Symbolic Logic 35 (1970), 14-18. MR 0288015 (44:5213)
  • [8] -, Applications of topology to $ {L_{{\omega _1}\omega }}$, Proc. Sympos. Pure Math., vol. 25, Amer. Math. Soc., Providence, R. I., 1973, pp. 233-240.
  • [9] J.-P. Ressayre, Models with compactness properties with respect to logics on admissible sets, Ann. of Math. Logic 11 (1977), 31-55. MR 0465849 (57:5735)
  • [10] J. Silver, Any $ \prod _1^1$ equivalence relation over $ {2^\omega }$ has either $ {2^{{\aleph _0}}}$ or $ \leqslant {\aleph _0}$ equivalence classes (manuscript).
  • [11] R. Vaught, Descriptive set theory in $ {L_{{\omega _1}\omega }}$, Lecture Notes in Math., vol. 337, Springer-Verlag, Berlin and New York, 1973, pp. 574-598. MR 0409106 (53:12868)
  • [12] J. P. Burgess, Equivalences generated by families of Borel sets, Proc. Amer. Math. Soc. (to appear). MR 0476524 (57:16084)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 02H10, 02B25

Retrieve articles in all journals with MSC: 02H10, 02B25


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1977-0472506-8
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society