CONVERGENCE OF PROBABILITY MEASURES ON SEPARABLE BANACH SPACES

L. Š. GRINBLAT

ABSTRACT. The following result follows immediately from a general theorem on the convergence of probability measures on separable Banach spaces: On the space $C[0, 1]$ there exists a norm $p(x)$ equivalent to the ordinary norm such that if $\xi_1(t), \ldots, \xi_n(t), \ldots$ and $\xi(t)$ are continuous random processes $(0 < t < 1)$ and for any finite set of points $t_1, \ldots, t_k \subset [0, 1]$ the joint distribution of $p(\xi_1(t)), \xi_1(t_1), \ldots, \xi_n(t_k)$ converges to the joint distribution of $p(\xi(t)), \xi(t_1), \ldots, \xi(t_k)$, then $\xi_n(t)$ converges weakly to $\xi(t)$.

1. Let X be a Banach space and X^* be the dual space of X.

Definition [1, §2]. We say that X has the H-property relative to a set $\mathcal{G} \subset X^*$ if from the conditions $\|x_n\| = \|x\| = 1$, $\lim_{n \to \infty} f(x_n) = f(x)$ for all $f \in \mathcal{G}$ it follows that $\lim_{n \to \infty} \|x_n - x\| = 0$.

In what follows we replace the phrase, “X has the property H relative to \mathcal{G}” by the symbol $X \in H_\mathcal{G}$.

Theorem 1 (Kadets, see [1, §2]). Let X be a separable Banach space, and \mathcal{G} be a subset of X^* such that

$$\inf_{x \in X} \sup_{f \in \mathcal{G}} \frac{|f(x)|}{\|f\| \|x\|} = \eta(\mathcal{G}) > 0 \quad (x \neq 0, f \neq 0).$$

Then we can introduce in X an equivalent norm $h(x)$ relative to which $X \in H_\mathcal{G}$.

It is easy to see that if $\eta(\mathcal{G}) > 0$, then there exists a countable set $\mathcal{G}_0 \subset \mathcal{G}$ such that $\eta(\mathcal{G}_0) > 0$.

In what follows in this section, we suppose that $X, \mathcal{G}, h(x)$ satisfy the conditions of Theorem 1 and \mathcal{G} is a countable set.

Let

$$S = \{ x \in X : h(x) = 1 \}, \quad B = \{ x \in X : h(x) < 1 \}.$$

We denote by $L_\mathcal{G}(S)$ the Banach algebra1 of bounded continuous functionals,2 defined on S, which is generated by all functionals from \mathcal{G}, restricted to S.

Received by the editors September 9, 1976 and, in revised form, March 23, 1977.

AMS (MOS) subject classifications (1970). Primary 60B05, 60B10; Secondary 46B99, 54D35.

1Throughout this paper, an algebra will mean an algebra with identity.

2Throughout this paper, a functional defined on a set A will mean a real function (without supplementary conditions) on A.

321
We denote by $M_T(B)$ the Banach algebra of bounded continuous functionals, defined on B, which is generated by all functionals from T, restricted to B, and the functional $h(x)$, restricted to B.

Lemma 1. For any point $x_0 \in S$ and for any closed set $F \subset S$ ($x_0 \not\in F$) there exists $f \in L_T(S)$ such that $f(x_0) = 0$ and $f(x) \geq 1$ if $x \in F$.

Proof. Let $T = \{f_1, \ldots, f_k, \ldots\}$. Consider numbers $e_1 > e_2 > \ldots > e_k \ldots$, such that $e_k \to 0$. Let $U_k = \{x \in S: |f_i(x_0) - f_i(x)| < e_k, \ i = 1, \ldots, k\}$. There exists k such that $U_k \cap F = \emptyset$. Define the functional f by

$$f(x) = \sum_{i=1}^{k} \frac{1}{e_k^2} (f_i(x_0) - f_i(x))^2.$$

Q.E.D.

Lemma 2. For any point $x_0 \in B$ and for any closed set $F \subset B$ ($x_0 \not\in F$) there exists $f \in M_T(B)$ such that $f(x_0) = 0$ and $f(x) \geq 1$ if $x \in F$.

Proof. Let $h(x_0) = a$. There exists a positive number $\varepsilon < a$ such that

$$U = \{x \in B: |h(x) - a| < \varepsilon, h(xa/h(x) - x_0) < \varepsilon\}$$

is contained in $B \setminus F$. Let

$$\hat{F} = \{x \in B \setminus U: h(x) = a\}.$$

By Lemma 1 applied to \hat{F} there exists $\hat{f} \in M_T(B)$ such that $\hat{f}(x_0) = 0$ and $\hat{f} > 1$ on \hat{F}. Since functionals in $M_T(B)$ are uniformly continuous, there exists a positive number $\delta < \min(\varepsilon, \frac{1}{2})$ such that $\hat{f}(x) > \frac{1}{2}$ if $|h(x) - a| < \delta$ and $xa/h(x) \not\in B \setminus U$. If $x \in F$, either $|h(x) - a| > \delta$, or $|h(x) - a| < \delta$ and $xa/h(x) \not\in B \setminus U$. Therefore we may take f to be

$$f(x) = \frac{1}{\delta^2} \left[(\hat{f}(x))^2 + (h(x) - a)^2 \right].$$

Q.E.D.

In [2, §5] and in [3, §2] the following was proved:

Lemma 3. Let the probability measures $\mu_1, \ldots, \mu_n, \ldots$ and μ be defined on the Borel sets of the separable metric space Ω and let $G(\Omega)$ be a Banach algebra of bounded continuous functions defined on Ω. Suppose that for any point $\omega_0 \in \Omega$ and for any closed set $F \subset \Omega$ ($\omega_0 \not\in F$) there exists $g \in G(\Omega)$ such that $g(\omega_0) = 0$ and $g(\omega) \geq 1$ for all $\omega \in F$. Suppose, finally, that for every function $g \in G(\Omega)$ the distribution of $g(\omega)$ with respect to the measure μ_n converges to the distribution of $g(\omega)$ with respect to the measure μ. Then μ_n converges weakly to μ.

Lemmas 2 and 3 imply the following:

Theorem 2. Let the probability measures $\mu_1, \ldots, \mu_n, \ldots$ and μ be defined on the Borel sets of X. If for any finite set of functionals $f_1, \ldots, f_k \in \Gamma$ the joint distribution of $h(x), f_1(x), \ldots, f_k(x)$ with respect to the measure μ_n converges to the joint distribution $h(x), f_1(x), \ldots, f_k(x)$ with respect to the measure μ, then μ_n converges weakly to μ.

2. Consider the space $C[0, 1]$ with the ordinary norm $\|x(t)\| = \max_{0 < t < 1} |x(t)|$. Let Γ be the set of functionals $f(x) = x(\tau)$, where τ is rational, $0 < \tau < 1$, $x \in C[0, 1]$. It is obvious that $\eta(\Gamma) = 1$. By virtue of Theorem 1 on the space $C[0, 1]$ there exists a norm $p(x)$, equivalent to the ordinary norm, relative to which $C[0, 1] \in H_\Gamma$. Theorem 2 implies the following:

Theorem 3. Let $\xi_1(t), \ldots, \xi_n(t), \ldots,$ and $\xi(t)$ be continuous random processes. If for any finite set of points $t_1, \ldots, t_k \subset [0, 1]$ the joint distribution of $p(\xi_n), \xi_n(t_1), \ldots, \xi_n(t_k)$ converges to the joint distribution of $p(\xi), \xi(t_1), \ldots, \xi(t_k)$, then for any continuous functional f on $C[0, 1]$ the distribution of $f(\xi_n)$ converges to the distribution of $f(\xi)$.

One can give an explicit formula for the norm $p(x)$. For example

$$p(x) = \max_{0 < t < 1} |x(t)| + \sum_{n=1}^\infty \frac{1}{2^n} \max_{|r-s| < 1/n} |x(t) - x(s)|.$$

3. It is obvious that if we weaken the hypothesis of Theorem 3, and demand only that the joint distribution of $\xi_n(t_1), \ldots, \xi_n(t_k)$ converges to the joint distribution of $\xi(t_1), \ldots, \xi(t_k)$, then, in general, the conclusion no longer holds. Therefore, it is interesting to compare Theorem 3 to the following results:

Theorem 4 [4]. Let $\xi_1(t), \ldots, \xi_n(t), \ldots,$ and $\xi(t)$ be measurable random processes ($0 < t < 1$). Suppose that there exist C and $p > 1$ such that for all n and t we have $E[|\xi_n(t)|^p] < C$. Suppose, finally, that for any finite set of points $t_1, \ldots, t_k \subset [0, 1]$ the joint distribution of $\xi_n(t_1), \ldots, \xi_n(t_k)$ converges to the joint distribution of $\xi(t_1), \ldots, \xi(t_k)$ and $E[|\xi_n(t)|^p] \to E[|\xi(t)|^p]$ for all $t \in [0, 1]$. Then for any continuous functional f on $L_p[0, 1]$ the distribution of $f(\xi_n)$ converges to the distribution of $f(\xi)$.

References

Department of Mathematics, Bar-Ilan University, Ramat-Gan, Israel

Current address: Department of Mathematics, Harvard University, Cambridge, Massachusetts 02138