IDENTIFICATION OF CERTAIN 4-MANIFOLDS
WITH GROUP ACTIONS

RONALD FINTUSHEI AND PETER SIE PAO

ABSTRACT. If M^3 is an orientable 3-manifold with an S^1-action or is a
Seifert fiber space, then the 4-manifold obtained by surgery along singular
fibers in $M \times S^1$ can also be obtained by surgery in $V^3 \times S^1$, where V is a
manifold related to M but with fewer singular fibers. An application is given
to Scharlemann’s “exotic” $(S^3 \times S^1 \# S^2 \times S^2)$’s.

Group actions have been successfully used in studying a wide class of 3
and 4-manifolds [6]–[9]. In this article we use circle actions to study the
geometric properties of a family of 4-manifolds obtained from $M^3 \times S^1$ by
performing surgery. Specifically, let M^3 be a local S^1-manifold without
SE-fibers [6], and in $M^3 \times S^1$ perform surgery along k circles of the form
(exceptional orbit) \times point. In Theorem 1 we show that the resulting mani-
fold can be obtained by surgery along k principal orbits in $V^3 \times S^1$ where
V^3 is a local S^1-manifold with structure simpler than that of M. (It has k
fewer exceptional orbits.)

The class of 3-manifolds with local S^1-action includes all the Seifert
manifolds. If M is a Seifert manifold with orbit space S^2 and r exceptional
fibers and if $k > r - 2$, the above V is a lens space. In particular, if K is the
dodecahedral space, surgery on an exceptional orbit in $K \times S^1$ yields an
exotic 4-manifold studied by Scharlemann [10]. Theorem 1 implies that W
can be obtained by surgery along a principal orbit in some $S^1 \times \{\text{lens space}\}$.
We then use a theorem of Pao [8] to conclude that $W \# S^2 \times S^2$ is
diffeomorphic to $S^3 \times S^1 \# S^2 \times S^2 \# S^2 \times S^2$.

1. Circle actions on 4-manifolds. In this section we review necessary pre-
liminary material concerning the classification of circle actions on closed
orientable 4-manifolds. Following [3] this is done in terms of a weighted
3-manifold which consists of the orbit space together with information about
the orbit types.

If S^1 acts locally smoothly on the closed oriented 4-manifold W the orbit
space W^* is an oriented 3-manifold. The orbits in W which have nontrivial
finite cyclic isotropy groups are called exceptional, and their image E^* in W^*

Presented to the Society April 1, 1977; received by the editors February 17, 1977 and, in
revised form, May 2, 1977.

This research was partially supported by N.S.F. Grants.

© American Mathematical Society 1978
consists of a finite collection of circles and open arcs. Each component of E^* has constant orbit type and is oriented and assigned Seifert invariants (α, β). Thus if we identify a neighborhood of a point $x^* \in E^*$ with $I \times D^2$, $I \subseteq E^*$, then the S^1-submanifold of W over $I \times D^2$ is equivalent to a product action $I \times (D^2 \times S^1)$ where S^1 acts on $D^2 \times S^1$ with Seifert invariants (α, β) [6].

If F^* denotes the image in W^* of the fixed point set then $E^* \cup F^*$ is the disjoint union of ∂W^* and a collection of closed arcs, circles, and isolated points. To each closed arc in $E^* \cup F^*$ an ordered pair of the integers 0 and -1 is also assigned, but this can be ignored for the purposes of this paper.

There is one further invariant which is important for classifying the S^1-action, namely, the characteristic class. It is defined as follows. Let Q^* be a regular neighborhood of the circles in $E^* \cup F^*$ and let N^* be a regular neighborhood of the remainder S^* of $E^* \cup F^*$. The restriction of the orbit map over $\text{Cl}(W^* - (Q^* \cup N^*))$ is a principal S^1-bundle projection which is trivial over ∂Q^*. This bundle can be extended over Q^* by gluing in $Q^* \times S^1$ with a bundle isomorphism. There are infinitely many choices for the gluing bundle isomorphism, but a specific gluing map can be chosen in a natural way. (We refer the reader to [3, §9] for details.) Thus we determine a principal S^1-bundle over $\text{Cl}(W^* - N^*)$; let $\chi' \in H^2(\text{Cl}(W^* - N^*))$ be its Euler class. By Poincaré duality

$$H^2(\text{Cl}(W^* - N^*)) \cong H_1(\text{Cl}(W^* - N^*), \partial \text{Cl}(W^* - N^*))$$
$$\cong H_1(W^*, N^*) \cong H_1(W^*, S^*).$$

The Poincaré dual of χ', say $\chi \in H_1(W^*, S^*)$, is called the characteristic class of the S^1-action on W.

The weighted orbit space of the S^1-action on W consists of the oriented orbit space W^*, the characteristic class $\chi \in H_1(W^*, S^*)$, and $E^* \cup F^*$ along with the orbit data described above. An isomorphism $f: W^*_1 \to W^*_2$ of weighted orbit spaces is an orientation-preserving homeomorphism which preserves orbit data and satisfies $f(\chi_1) = \chi_2$ where $\chi_1 \in H_1(W^*_1, S^*_1)$ is the characteristic class.

EQUIVARIANT CLASSIFICATION THEOREM [3]. Oriented closed 4-manifolds with locally smooth S^1-actions are orientation-preserving equivariantly homeomorphic if and only if they have isomorphic weighted orbit spaces.

One sees from the constructions of [2] and [3] that each such action is equivalent to a smooth action. Also it follows easily from the proof of the classification theorem that if W and W' are smooth S^1-manifolds with isomorphic weighted orbit spaces there is a (not necessarily equivariant) PL homeomorphism $W \to W'$. Thus W and W' are diffeomorphic since $\text{PL} = \text{DIFF}$ in these low dimensions.

2. **Surgery on $M^3 \times S^1$**. One of the commonly used techniques of constructing interesting 4-manifolds consists of performing surgeries on a known 4-manifold along some properly chosen circles. The known 4-manifold
is frequently taken to be a bundle over S^1 with fiber a 3-manifold [1], [5], [9], [10]. In this section we study a family of 4-manifolds constructed in this way.

A local S^1-action on a space X is a decomposition of X into points and circles such that each decomposition element has a neighborhood admitting an effective S^1-action with the elements of the decomposition as orbits. A local S^1-action on a 3-manifold is characterized by its orbit invariants. We shall be concerned here with orbit invariants of the form \(\{ b; (e, g, h, 0); (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r) \} \), which can be explained briefly as follows (see [6]). If M is a local S^1-3-manifold with the above invariants, its orbit (decomposition) space is a 2-manifold M^* of genus g with h boundary components, the images of h circles of fixed points in M. M^* is orientable if $e = o_1$ or o_2, nonorientable if $e = n_1, n_2, n_3$ or n_4. There are r exceptional orbits in M with Seifert invariants $(\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r)$. The integer b and e classify up to weak equivalence an S^1-bundle over $\text{Int} M^*$ which is obtained by canonically replacing tubular neighborhoods of exceptional orbits with tubular neighborhoods of principal orbits. The local action is an action if and only if $e = o_1$ or n_2, and in this case the associated S^1-bundle is principal and b is its Euler class.

Now let M be a 3-manifold with the local S^1-action \(\{ b; (e, g, h, 0); (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r) \} \), and let the 2-manifold M^* be its orbit space. The 4-manifold $N = M \times S^1$ inherits a product local S^1-action, trivial in the S^1-factor. The orbit space of this local action is $N^* = M^* \times S^1$, and E^* consists of r oriented circles with Seifert invariants $(\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r)$. Let $C \subseteq N$ be any circle orbit, and let T be a tube of C; so $T \approx S^1 \times D^3$. Performing a surgery on N along C removes T and fills in a copy of $D^2 \times S^2$. It is easily seen that this cutting and pasting can always be done equivariantly; i.e. we can define an S^1-action on $D^2 \times S^2$ so that the attaching map is S^1-equivariant (cf. [9, §3]). Therefore, after performing surgeries on N along circle orbits, the resulting manifold again has a local S^1-action. On the orbit space level the surgery replaces the orbit space of T, a 3-cell, with the orbit space of $D^2 \times S^2$, a 3-cell or $S^2 \times I$. If C is an exceptional orbit of type (α_i, β_i) the orbit space of $D^2 \times S^2$ will be a 3-cell. The effect of this surgery on the orbit space is to replace the circle in E^* corresponding to (α_i, β_i) by the circle

![Diagram](https://example.com/diagram)

or the arc.
In the second case the surgery has replaced orbits corresponding to the missing arc by principal orbits having trivial isotropy.

Theorem 1. Let M^3 be the local S^1-manifold \(\{ b; (e, g, \tilde{h}, 0); (\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r) \} \) and let W be a 4-manifold obtained from $M \times S^1$ by performing surgeries on the circles $C_i \times t_i$, $i = k + 1, \ldots, r$, where C_i is the exceptional orbit in M of type (α_i, β_i) and $t_i \in S^1$. Then there is a local S^1-manifold $V^3 = \{ a; (e, g, \tilde{h}, 0); (\alpha_1, \beta_1), \ldots, (\alpha_k, \beta_k) \}$ such that W is diffeomorphic to a 4-manifold obtained from $V \times S^1$ by doing surgeries along $r - k$ principal orbits.

Proof. Consider first the case where M is an oriented S^1-manifold ($e = o_1$). It follows from the above discussion that W is an S^1-manifold with orbit space $W^* = M^* \times S^1$, $E^* \cup F^*$ consists of ∂W^*, k oriented circles in E^* with Seifert invariants $(\alpha_1, \beta_1), \ldots, (\alpha_k, \beta_k)$, and $r - k$ circles and arcs in $E^* \cup F^*$ as described above. Viewing $M^* \times S^1$ as obtained from $M^* \times I$ by identifying $M^* \times 0$ with $M^* \times 1$, we picture W^* in Figure 1, leaving unlabelled the $r - k$ circles and arcs of $E^* \cup F^*$.

![Figure 1](image1)

Applying the replacement trick of [9, §2] to these $r - k$ components of $E^* \cup F^*$ alters the S^1-action on W so that the new orbit space W^*_1 consists of W^* without the above $r - k$ circles and arcs and with $0 < j < r - k$ open 3 disks removed and $r - k - j$ pairs of fixed points in int W^*_1 (Figure 2).

![Figure 2](image2)
The manifold W is determined up to diffeomorphism by this weighted orbit space and the characteristic class of the action. The dual characteristic class χ' lies in $H^2(W^* - S^*)$, which is embedded in the short exact sequence

$$0 \to H^2(M^* \times S^1) \to H^2(W^* - S^*) \to \ker \delta \to 0,$$

where δ is the Mayer-Vietoris coboundary arising from the sequence for $M^* \times S^1 = (W^* - S^*) \cup (\bigcup_i D^3)$, $t = j + 2(r - k - j)$. Since $\ker \delta \subseteq H^2(\bigcup_i S^2)$, the sequence splits and we identify $H^2(W^* - S^*) = H^2(M^* \times S^1) \oplus \ker \delta$ and $\chi' = (\xi, \eta)$.

We may choose circles $\{S_i\}$ in M^* which generate $H^1(M^*)$ and which do not intersect $E^* \cup F^*$. The various applications of surgery and the replacement trick performed on $M \times S^1$ to obtain W do not alter the trivial principal orbit bundle over each $S_i \times S^1$. Thus if $V^* = M^* \times 1$ in Figure 2, ξ is determined by $\xi|V^*$ which in turn is determined by the integer a, where the S^1-submanifold V of W over V^* has orbit invariants $\{a; (o_1, g, h, o); (a_1, \beta_1), \ldots, (a_k, \beta_k)\}$. The other component χ' is determined by the principal orbit bundles over the components of $\bigcup_i S^2$, all of which arise due to the replacement trick. Over each of the j 2-spheres which are boundaries of collar neighborhoods of 2-spheres in F^*, the principal orbit bundle is trivial. The remaining $2(r - k - j)$ 2-spheres are the boundaries of regular neighborhoods of single point components of F^*. They are introduced in pairs by the replacement trick and the Euler numbers of the bundles over the associated 2-spheres occur in a \pm-pair. It then follows that the isomorphism type of the weighted orbit space W^*_1, and therefore the diffeomorphism type of W, depends only on the orbit data of W^*_1 and the S^1-action over V^*. For this reason we call V^* a characteristic surface of W^*_1.

Let C_1, \ldots, C_{k-1} be principal orbits in $V \times S^1$. By performing equivariant surgeries in $V \times S^1$ with properly chosen framings we can construct an S^1-manifold W_2 whose weighted orbit space W^*_2 is exactly W^*_1. In $V^* \times S^1$ there is a $V^* \times t$ which is not affected by the surgeries, and this gives rise to a characteristic surface $V^*_2 \subseteq W^*_2$. The action over V^*_2 is just that on V, hence W and W_2 are diffeomorphic.

If $\epsilon = n_2$ a similar argument applies. Although the equivariant classification theorem of [3] does not generally cover S^1-actions on nonorientable 4-manifolds, the extension to the particular case at hand is trivial.

In case $\epsilon \neq o_1, n_2$ the replacement trick still gives another local S^1-action to W with orbit space W^*_1 as in Figure 2. The equivariant classification theorem has an analogue in this particular situation. Using notation of §1, one obtains over $\text{Cl}(W^*_1 - N^*)$ a (nonorientable) S^1-bundle which is classified by its first Stiefel-Whitney class (viewed as a homomorphism ω: $\pi_1(\text{Cl}(W^*_1 - N^*)) \to \mathbb{Z}_2$) and by its primary obstruction $o_2 \in H^2(\text{Cl}(W^*_1 - N^*); \mathbb{Z}')$ where coefficients are twisted by ω. The pair of invariants (ω, o_2) replaces the characteristic class, and the classification then proceeds as in §1 except that unoriented Seifert invariants $(1 \leq \beta < \alpha/2)$ are required (cf. [11]). If a
characteristic surface is chosen as before, then \((\omega, \sigma_2)\) can be obtained from the corresponding invariants over \(V^*\); so the earlier proof applies to the general situation.

3. Scharlemann's manifolds. Let \(K\) be the dodecahedral space, and in \(K \times S^1\) let \(C \times \text{point}\) be an embedded circle representing a noncentral element of \(\pi_1(K)\). There are two framings for surgery along \(C \times \text{point}\) and we denote the resulting 4-manifolds by \(W_c\) and \(W'c\), distinguished by \(w_2(W_c) = 0\) and \(w_2(W'c) \neq 0\). It is known that for all such \(C\), \(W_c\) is diffeomorphic to \(S^3 \times S^1 \# CP^2 \# -CP^2\). There are 118 noncentral elements in \(\pi_1(K)\), and the corresponding manifolds \(W_c\) were introduced by M. Scharlemann [10] to construct fake homotopy structures on \(S^3 \times S^1 \# S^2 \times S^2\). We address the question of whether the manifolds \(W_c\) are diffeomorphic to \(S^3 \times S^1 \# S^2 \times S^2\) [4, Problem 4.15].

It is well known that \(K\) carries the \(S^1\)-action with orbit data \(\{-1; (o_1, 0, 0, 0); (2, 1), (3, 1), (5, 1)\}\). If \(C\) is an exceptional orbit in \(K\), it represents a noncentral element in \(\pi_1(K)\), and it follows from Theorem 1 that \(W_c\) can be obtained from \(L \times S^1\), for some lens space \(L = \{(a; (o_1, 0, 0, 0); (a_1, \beta_1), (a_2, \beta_2)\}\), by performing surgery along a principal orbit. In [8, III. 3 and III. 5] it is shown that surgery on \(L \times S^1\) along an exceptional orbit \(C'\) yields \(S^3 \times S^1 \# S^2 \times S^2\). After performing another surgery, on \(C\), which can now be viewed as lying in \(S^3 \times S^1 \# S^2 \times S^2\), we obtain \(S^3 \times S^1 \# S^2 \times S^2 \# S^2 \times S^2\). On the other hand, after doing surgery on \(C\), the orbit \(C'\) becomes homotopically trivial in \(W_c\); so by general position \(C'\) bounds an immersed disk with isolated double points which can be piped to the boundary along arcs and eliminated. Thus \(C'\) bounds a smooth 2-disk in \(W_c\), and surgery on \(C'\) yields \(W_c \# S^2 \times S^2\). Since \(C\) and \(C'\) are disjoint the order of the surgeries is irrelevant and we obtain

\[W_c \# S^2 \times S^2 = S^3 \times S^1 \# S^2 \times S^2 \# S^2 \times S^2. \]

For arbitrary choices of circles \(C_1, C_2\) in \(K \times S^1\) representing noncentral elements of \(\pi_1(K)\), the above argument shows

\[W_{c_1} \# S^2 \times S^2 = W_{c_2} \# S^2 \times S^2. \]

In conclusion:

Theorem 2. If \(C\) is a simple closed curve in \(K\) representing a noncentral element of \(\pi_1(K)\) then \(W_c \# S^2 \times S^2\) is diffeomorphic to \(S^3 \times S^1 \# 2(S^2 \times S^2)\).

Of course, we would like to show that \(W_c = S^3 \times S^1 \# S^2 \times S^2\), but explicit computations following the proof of Theorem 1 put this result slightly out of reach. For example, if \(C\) is the exceptional orbit in \(K\) with Seifert invariants \((5, 1)\) then \(W_c\) carries a circle action with orbit space equal to \(S^2 \times S^1\) minus an open 3-disk as in Figure 3.
The characteristic class of this action is $\chi = 0$. The manifold $S^3 \times S^1 \# S^2 \times S^2$ carries a circle action with exactly the same orbit space but with $\chi = -1$.

REFERENCES

DEPARTMENT OF MATHEMATICS, TULANE UNIVERSITY, NEW ORLEANS, LOUISIANA 70118

CURRENT ADDRESS (P. S. PAO): School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540