Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

On ordinally closed sets


Author: John C. Morgan
Journal: Proc. Amer. Math. Soc. 68 (1978), 92-96
MSC: Primary 04A15
DOI: https://doi.org/10.1090/S0002-9939-1978-0457217-8
MathSciNet review: 0457217
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Extensions of Cantor's Intersection Theorem and Zalcwasser's theorem on transfinite sequences of ambiguous sets of the first Baire class are given for linear sets.


References [Enhancements On Off] (What's this?)

  • [1] R. Baire, Sur les fonctions de variables réelles, Ann. Mat. Pura Appl. (3) 3 (1899), 1-123.
  • [2] G. Cantor, Contributions to the founding of the theory of transfinite numbers, Dover, New York, 1952. MR 0045635 (13:612d)
  • [3] A. Denjoy, L'énumération transfinie, Livre I, Gauthier-Villars, Paris, 1946. MR 0018190 (8:254b)
  • [4] I. Grattan-Guinness, The correspondence between Georg Cantor and Philip Jourdain, Jber. Deutsch. Math.-Verein. 73 (1971), 111-130. MR 0490811 (58:10126)
  • [5] J. C. Morgan II, Infinite games and singular sets, Colloq. Math. 29 (1974), 7-17. MR 0351821 (50:4309)
  • [6] F. Riesz, Stetigkeitsbegriff und abstrakte Mengenlehre, Atti IV Congr. Internaz. Mat., Roma, 1908, Vol. II, pp. 18-24.
  • [7] W. Sierpiński, Uogólnienie pewnego twierdzenia Cantora z teorji mnogości punktowych, Wektor 4 (1915), 49-51.
  • [8] -, Un théorème sur les ensembles fermés, Bull. Sci. Math. (2) 41 (1917), 290-292 (also appeared in Bull. Intern. Acad. Sci. Cracovie,1918, 49-51.)
  • [9] -, Sur un ensemble linéaire non dénombrable qui est de première catégorie sur tout ensemble parfait, C. R. Soc. Sci. Varsovie 25 (1932), 102-105.
  • [10] -, Sur l'existence des suites transfinies décroissantes d'ensembles $ {F_\sigma }$, C. R. Soc. Sci. Varsovie 26 (1933), 85-89.
  • [11] W. H. and G. C. Young, The theory of sets of points, Chelsea, New York, 1972.
  • [12] Z. Zalcwasser, Un théorème sur les ensembles qui sont à la fois $ {F_\sigma }$ et $ {G_\delta }$, Fund. Math. 3 (1922), 44-45.

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 04A15

Retrieve articles in all journals with MSC: 04A15


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0457217-8
Keywords: Cantor's Intersection Theorem, ordinally closed sets, stationary sequences of sets, monotone family of sets
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society