Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 
 

 

Approximation by polynomials in $ z$ and another function


Author: Kenneth John Preskenis
Journal: Proc. Amer. Math. Soc. 68 (1978), 69-74
MSC: Primary 30A82
DOI: https://doi.org/10.1090/S0002-9939-1978-0457740-6
MathSciNet review: 0457740
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We present some progress in the understanding of when and why polynomials in z and a given continuous function f are uniformly dense in all continuous complex valued functions on the closed unit disk. The first theorem requires that f be an $ {\text{ACL}^2}$-function in a neighborhood of the disk which satisfies $ \operatorname{Re} {f_{\bar z}} \geqslant \vert{f_z}\vert$ almost everywhere and $ {f^{ - 1}}(f(a))$ is countable for each a. The second theorem requires that f have a special form and satisfy $ \vert{f_{\bar z}}\vert > \vert{f_z}\vert$ everywhere except at the origin. The form is that $ f = {\bar z^k}\phi (\vert z{\vert^{2k}})$ where $ \phi $ is a complex valued function of a real variable satisfying $ \phi $ is continuous in [0, 1], $ \phi '$ exists in (0, 1) and where k is a positive integer.


References [Enhancements On Off] (What's this?)

  • [1] A. Browder, Introduction to function algebras, Benjamin, New York, 1969. MR 0246125 (39:7431)
  • [2] L. De Branges, The Stone-Weierstrass theorem, Proc. Amer. Math. Soc. 10 (1959), 822-824. MR 0113131 (22:3970)
  • [3] K. Preskenis, Approximation on disks, Trans. Amer. Math. Soc. 171 (1972), 445-467. MR 0312123 (47:685)
  • [4] -, Another view of the Weierstrass theorem, Proc. Amer. Math. Soc. 54 (1976), 109-113. MR 0390779 (52:11602)
  • [5] J. Väisälä, Lectures on n-dimensional quasi-conformal mappings, Lecture Notes in Math., vol. 229, Springer-Verlag, Berlin and New York, 1971.
  • [6] J. Wermer, Approximation on a disk, Math. Ann. 155 (1965), 331-333. MR 0165386 (29:2670)
  • [7] -, Polynomially convex disks, Math. Ann. 158 (1965), 6-10. MR 0174968 (30:5158)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A82

Retrieve articles in all journals with MSC: 30A82


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0457740-6
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society