NEAR COMPACTNESS AND SEPARABILITY
OF SYMMETRIZABLE SPACES

R. M. STEPHENSON, JR.

Abstract. Although every feebly compact, Baire, semimetrizable space is separable, we prove here that for every infinite cardinal number \(n \) there exists a feebly compact, Baire, symmetrizable Hausdorff space which has no dense subset of cardinality less than \(n \).

For a topological space \(X \), a mapping \(d: X \times X \to [0, \infty) \) is said to be a symmetric provided that: (i) for all \(x, y \in X \), \(d(x, y) = d(y, x) \), and \(d(x, y) = 0 \) if and only if \(x = y \); and (ii) for any subset \(V \) of \(X \), \(V \) is open if and only if for each point \(v \in V \) there exists \(e > 0 \) with \(B(v, e) = \{ x \in X : d(x, v) < e \} \subset V \). If, in addition, each \(B(x, e), x \in X, e > 0 \), is a neighborhood of \(x \), then \(d \) is called a semimetric. A space \(X \) which has a symmetric (semimetric) is said to be symmetrizable (semimetrizable).

A. V. Arhangel'skii [A, p. 126] proved that every countably compact symmetrizable Hausdorff space is metrizable, and in [S1] and [S2] properties of symmetrizable feebly compact spaces were studied (recall that a space \(X \) is said to be feebly compact if every locally finite family of open subsets of \(X \) is finite). Of particular interest there was the question: Is every feebly compact symmetrizable space separable? Proofs were given in [S1] that every feebly compact symmetrizable space having a dense set of isolated points is separable, and in [S2, Theorem 10] that every feebly compact, Baire, semimetrizable space is separable. The latter extended Reed’s theorem [R] that every Moore-closed space is separable, for a Moore-closed space is regular and feebly compact [G], and a regular, feebly compact space is Baire [M].

In this paper, a modification of a very nice technique developed in [DGN, Example 3.1] is used to settle the question in the negative, and we obtain the following surprising result.

Theorem. Let \(n \) be an infinite cardinal number. Then there exists a Baire, feebly compact, symmetrizable Hausdorff space \(X \) such that no dense subset of \(X \) has cardinality less than \(m = n^\aleph_0 \).

Proof. Let \(Y \) be a metrizable Baire space such that \(|V| = m \) for every nonempty open subset \(V \) of \(Y \), and \(|D| = m \) for any dense subset \(D \) of \(Y \). Let \(d' \) be a metric for \(Y \), \(\mathfrak{B} \) a base for \(Y \) with \(|\mathfrak{B}| = m \), and \(C \) be the family of all
countably infinite, pairwise disjoint, locally finite families of nonempty members of \mathcal{B}.

List the members of the collection \mathcal{C} as $\mathcal{C} = \{C_k: k < m\}$ and list the members of each C_k in a 1-1 manner as $\bar{C}_k = \{C_{kj}: j \in \mathbb{N}\}$. Since each $|C_{kj}| = m$, one can by transfinite induction select points $s_{kj} \in C_{kj}$, where $k < m$ and $j \in \mathbb{N}$, so that whenever $i, k \in m$ and $i \neq k$, then

$$\{s_{kj}: j \in \mathbb{N}\} \cap \{s_{kj}: j \in \mathbb{N}\} = \emptyset.$$

Let $X = Y \cup m$ and extend d' to a symmetric d on X by the rule

$$d(x, y) = d(y, x) = \begin{cases} 0 & \text{if } x = y; \\ d'(x, y) & \text{if } x, y \in X; \\ 1/j & \text{if } x = k \text{ and } y = s_{kj}; \text{ and} \\ 1 & \text{otherwise}. \end{cases}$$

Next, let X have the topology induced on it by d.

Before verifying that X is Hausdorff, observe that for each point $y \in Y$, one has $y = s_{kj}$ for at most one pair k, j, so for each $y \in Y$ there exists $e(y) > 0$ with $B(y, e(y)) \subset Y$. Thus $\{B(y, e): 0 < e < e(y)\}$ is a fundamental system of open neighborhoods of y in X. For a point $k < m$, a fundamental system of open neighborhoods is the family of all sets having the form

$$\{k\} \cup \left(\bigcup \{B(s_{kj}, f_j): 0 < f_j < e(s_{kj}), t < j\} \right),$$

where $t \in \mathbb{N}$ and f is a sequence of real numbers, the jth term of which is f_j.

Consider distinct points x and y in X. If both are in the metrizable open subset Y, then disjoint neighborhoods can certainly be found. Suppose $x = k < m$ and $y \in Y$. For some $t \in \mathbb{N}$, $\{y\}$ and $\{s_{kj}: j > t\}$ are disjoint closed subsets of Y (since \bar{C}_k is locally finite in Y and pairwise disjoint), so there exist disjoint open subsets U and V of Y with $y \in U$ and $\{s_{kj}: j > t\} \subset V$. Thus, U and $V \cup \{k\}$ are disjoint neighborhoods of y and x. If $x = k$ and $y = r$ with $k, r < m$, then one can (again) appeal to the normality of Y and topology on X to find disjoint open sets containing $\{k\} \cup \{s_{kj}: j \in \mathbb{N}\}$ and $\{r\} \cup \{s_{kj}: j \in \mathbb{N}\}$.

Because Y is a dense, Baire subspace of X, the space X must also be Baire. Since Y is an open subspace having no dense subset of cardinality less than m, then X has no dense subset of cardinality less than m.

Finally, suppose that \mathcal{V} is an infinite family of open subsets of X. We will prove that \mathcal{V} fails to be locally finite.

Suppose, on the contrary, that \mathcal{V} is locally finite. Since Y is dense in X, one can find a countably infinite pairwise disjoint family \mathcal{W} of members of \mathcal{B} and a 1-1 mapping $f: \mathcal{W} \rightarrow \mathcal{V}$ such that for each $W \in \mathcal{W}$, one has $W \subset f(W)$. Evidently any point at which \mathcal{W} fails to be locally finite must also be a point at which \mathcal{V} fails to be locally finite. Thus \mathcal{W} is locally finite with respect to Y, and hence $\mathcal{W} = \bar{C}_k$ for some $k < m$. But clearly \bar{C}_k fails to be
locally finite at the point k, so we have a contradiction.

Remarks. (i) I do not know if every regular, feebly compact symmetrizable space is separable. Since a G_δ-point in a regular, feebly compact space must have a countable neighborhood base (by an observation of I. Glicksberg), and since a first countable symmetrizable Hausdorff space is semimetrizable, any example of a regular, feebly compact, symmetrizable space that is not separable would also provide a negative answer to the still open question (see [DGN]) as to whether or not every point of a regular symmetrizable space must be a G_δ.

(ii) In the construction above, if Y is chosen so that no compact subset of Y has nonempty interior, then arguments similar to ones given in [DGN] show that X has a closed subset, namely m, which fails to be a G_δ-set (because then if \mathcal{V} is a countable family of open sets containing m, the family $\mathcal{U} = \{ V \cap Y : V \in \mathcal{V} \}$ consists of dense open subsets of Y, and so $\emptyset \neq \bigcap \mathcal{U} \subset Y$ and $\bigcap \mathcal{V} \neq m$).

Bibliography

Department of Mathematics and Computer Science, University of South Carolina, Columbia, South Carolina 29208