Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Maximal and minimal ring topologies

Author: Niel Shell
Journal: Proc. Amer. Math. Soc. 68 (1978), 23-26
MSC: Primary 12J99
MathSciNet review: 0460305
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An explicit description is given of a nondiscrete ring topology on the field Q of rational numbers which is strictly finer than the locally bounded topology on Q having the ring of integers as a preorder. It is observed that either there exist nonvaluable minimal ring topologies or there exist ring topologies containing no minimal ring topologies.

References [Enhancements On Off] (What's this?)

  • [1] J. Heine and S. Warner, Ring topologies on the quotient field of a Dedekind domain, Duke Math. J. 40 (1973), 473-486. MR 0319960 (47:8501)
  • [2] L. A. Hinrichs, Integer topologies, Proc. Amer. Math. Soc. 15 (1964), 991-995. MR 0178028 (31:2286)
  • [3] J. O. Kiltinen, Inductive ring topologies, Trans. Amer. Math. Soc. 134 (1968), 149-169. MR 0228474 (37:4054)
  • [4] M. E. Shanks and S. Warner, Topologies on the rational field, Bull. Amer. Math. Soc. 79 (1973), 1281-1282. MR 0369333 (51:5568)
  • [5] N. Shilkret, Non-Archimedean orthogonality, Arch. Math. 27 (1976), 67-78. MR 0440346 (55:13221)
  • [6] J. H. Williamson, On topologizing the field C(t), Proc. Amer. Math. Soc. 5 (1954), 729-734. MR 0063574 (16:145f)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12J99

Retrieve articles in all journals with MSC: 12J99

Additional Information

Keywords: Field topology, non-Archimedean ring topology, non-Archimedean uniformity, minimal ring topology, maximal ring topology, nonideal topology, sigma-bounded ring topology, lattice of ring topologies
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society