RESIDUAL LINEARITY FOR CERTAIN NILPOTENT GROUPS

P. MENAL

Abstract. In this note we consider relations between residual finiteness and residual linearity for a nilpotent group G. We show, amongst other things, that if the center and the commutator subgroup of G are finitely generated and G is residually linear, then G is residually finite. Indeed the property which we use on linear groups is that linear groups satisfy the minimal condition on centralizers.

Let P be a group property. We recall that a given group G is called residually P if it is a subdirect product of groups having the property P. For any group G let $R(G)$ be the intersection of all its normal subgroups of finite index. Thus $R(G) = \langle 1 \rangle$ if and only if G is residually finite. For any integer n let G^n be the subgroup of G generated by the nth powers of elements of G. For abelian groups it is well known that $R(G) = \cap_{n>1} G^n$; if in addition the p-torsion of G is bounded for each prime p, then $R(G)$ is a radicable group. We say that G is residually linear if for each $1 \neq x \in G$ there exists a field K and a homomorphism $\phi: G \to \text{GL}(n, K)$ such that $\phi(x) \neq 1$. An abelian group is \mathbb{Z} if it is a subdirect product of cyclic groups C_i such that $C_i = \mathbb{Z}$ or $|C_i| < n$ for a fixed integer n. We will use the symbols $\Gamma_n(G)$ and $Z_n(G)$ for the terms in the lower and upper central series of G. If X is a subset of the group G we denote by $C_G(X)$ its centralizer.

The main result of this paper is

Theorem I. (i) Let G be a nilpotent residually linear group. If $\Gamma_2(G)$ is finitely generated and $Z_1(G)$ is \mathbb{Z}, then G is residually finite.

(ii) There exists a nilpotent group of class 2 with $\Gamma_2(G)$ finitely generated and $Z_1(G)$ residually finite, such that it is residually linear but it is not residually finite.

(iii) There exists a nilpotent group of class 3 with $Z_1(G)$ cyclic, which is residually linear but it is not residually finite.

Corollary. Let G be a nilpotent group of class 2 with $Z_1(G)$ finitely generated. Then residually linear implies residually finite.

Lemma I. Let G be a nilpotent linear group. If H is a normal subgroup of G such that $H \cap Z_1(G)$ is finitely generated, then H is finitely generated.

Received by the editors May 5, 1977.
Key words and phrases. Nilpotent group, residually finite, residually linear.

© American Mathematical Society 1978

27
Proof. We proceed by induction on the class c of G, the case $c = 1$ being obvious. Suppose that the elements x_1, x_2, \ldots, x_n of G span G linearly, clearly

$$Z_1(G) = C_G(x_1, x_2, \ldots, x_n).$$

Let $[x, y] = x^{-1}y^{-1}xy$ denote commutators in G, then the map

$$H \cap Z_2(G) \to (H \cap Z_1(G)) \times \cdots \times (H \cap Z_1(G))$$

in which $x \mapsto ([x, x_1], \ldots, [x, x_n])$ is a group homomorphism with kernel $H \cap Z_1(G)$. Thus $(H \cap Z_2(G))/(H \cap Z_1(G))$ is finitely generated. Since G is a linear group, $G/Z_1(G)$ is linear [5, Theorem 6.2] and we have that

$$(H \cap Z_1(G))/Z_1(G) \cong (H \cap Z_2(G))/(H \cap Z_1(G))$$

is finitely generated. By induction it follows that

$$HZ_1(G)/Z_1(G) \cong H/(H \cap Z_1(G))$$

is finitely generated and the result is clear.

Lemma 2. Let G be a nilpotent linear group. Then the following are equivalent.

(i) If $x \in G$, the normal closure of $\langle x \rangle$ in G is finitely generated.

(ii) $T_3(G)$ is finitely generated.

(iii) $G/Z_1(G)$ is finitely generated.

Proof. For arbitrary nilpotent groups (iii) implies (ii) [3, Corollary 3.19]. Trivially (ii) implies (i). Let x_1, x_2, \ldots, x_n be elements of G spanning G linearly. If we suppose that the normal closure F in G of $\langle x_1, x_2, \ldots, x_n \rangle$ is finitely generated, the homomorphism

$$Z_2(G) \to F \times \cdots \times F$$

in which $x \mapsto ([x, x_1], \ldots, [x, x_n])$ proves that $Z_1(G/Z_1(G))$ is finitely generated. It follows from Lemma 1 that $G/Z_1(G)$ is finitely generated. This proves that (i) implies (iii).

Lemma 3. Let G be a nilpotent group such that $G/Z_1(G)$ is finitely generated. Then G is residually finite if and only if $Z_1(G)$ is residually finite.

Proof. It suffices to show that $R(Z_1(G)) = R(G)$. Trivially $R(Z_1(G)) \subseteq R(G)$. For if N is a subgroup of $Z_1(G)$ of finite index, $N \triangleleft G$, so G/N is finitely generated, nilpotent and hence residually finite [2, Theorem 2.1]. Thus $R(G) \subseteq N$ and $R(G) \subseteq R(Z_1(G))$.

We remark that Lemma 3 is a trivial consequence of [4, Proposition 1]. However, the above is quite sufficient for our purposes.

Proposition 4. Let G be a residually linear nilpotent group satisfying the following conditions.

(i) If $x \in G$, the normal closure of $\langle x \rangle$ in G is finitely generated.

(ii) $G/T_3(G)$ is residually finite and for each prime p its p-torsion is bounded.

Then G is residually finite.
PROOF. Let \(1 \neq x \in G \). We will prove that \(x \not\in R(G) \). Since \(G \) is residually linear we can consider a homomorphism \(\phi \) of \(G \) into a linear group such that \(\phi(x) \neq 1 \). Let \(\bar{G} = G/(\text{Ker } \phi \cap \Gamma_2(G)) \). Since homomorphic images of \(G \) satisfy (i) it follows from Lemma 2 that \(\Gamma_2(G/\text{Ker } \phi) \) and \((G/\text{Ker } \phi)/Z_1(G/\text{Ker } \phi) \) are finitely generated. Clearly \(\bar{G} \cong (G/\text{Ker } \phi) \times (G/\Gamma_2(G)) \). Then we see easily that \(\Gamma_2(\bar{G}) \) and \(\bar{G}/Z_1(\bar{G}) \) are finitely generated. Furthermore we have

\[
\bar{G}/\Gamma_2(\bar{G}) \cong G/\Gamma_2(G).
\]

Thus by (ii) we conclude that the \(p \)-torsion of \(\bar{G} \) is bounded for each prime \(p \). Therefore \(R(Z_1(\bar{G})) \) is a radicable group. But \(G/\Gamma_2(G) \) is residually finite so \(R(Z_1(\bar{G})) \subseteq \Gamma_2(\bar{G}) \). Since \(\Gamma_2(\bar{G}) \) is finitely generated, necessarily \(R(Z_1(\bar{G})) = \langle 1 \rangle \). Now Lemma 3 implies that \(\bar{G} \) is residually finite. Since \(x \not\in \text{Ker } \phi \cap \Gamma_2(G) \) we conclude that \(x \not\in R(G) \).

Lemma 5. Let \(G \) be a \(\mathcal{R} \) group and let \(H \) be a finitely generated subgroup. Then \(G/H \) is a \(\mathcal{R} \) group.

Proof. \(G \) is a \(\mathcal{R} \) group hence \(G \subseteq \mathbb{Z} \times C \). Where \(C \) is a bounded group and so a direct sum of cyclic groups [1, Theorem 17.2]. Since subgroups of \(\mathcal{R} \) groups are \(\mathcal{R} \) groups, we can assume \(G = \mathbb{Z} \times C \) in order to prove the lemma. Let \(H \) be a finitely generated subgroup of \(G \). Then there exist finitely generated subgroups \(M \subseteq \mathbb{Z} \) and \(N \subseteq C \) such that \(H \subseteq M \times N \). Every finitely generated subgroup of \(\mathbb{Z} \) can be embedded in a finitely generated direct summand of \(\mathbb{Z} \) [1, Theorem 19.2]. Clearly the same property holds for \(C \). Therefore we may, in addition, suppose that \(M \times M' = \mathbb{Z} \) and \(N \times N' = C \) for some \(M' \subseteq \mathbb{Z} \) and \(N' \subseteq C \). Now we have

\[
G/H \cong (M \times N/H) \times M' \times N'
\]

and the result follows.

We can now give the

Proof of Theorem 1. (i) By the proposition, we have only to prove that \(G/\Gamma_2(G) \) is residually finite and the elements of \(G/\Gamma_2(G) \) of finite order are of bounded order. We use induction on the class \(c \) of \(G \). If \(c = 1 \) the result is trivial. Suppose \(c > 1 \) and let \(\bar{G} = G/Z_1(G) \). Trivially \(\Gamma_2(\bar{G}) \) is finitely generated. \(Z_1(\bar{G}) \) is \(\mathcal{R} \), since it is contained in a product \(\mathbb{Z} \). By induction we have that \(\bar{G}/\Gamma_2(\bar{G}) \) is residually finite and its torsion is bounded. Since \(Z_1(G) \) is \(\mathcal{R} \) and \(\Gamma_2(G) \) is finitely generated it follows from Lemma 5 that \(Z_1(G)\Gamma_2(G)/\Gamma_2(G) \) is \(\mathcal{R} \). Therefore we have that \(G/\Gamma_2(G) \) is of torsion bounded. Thus \(R(G/\Gamma_2(G)) \) is a radicable group contained in \(Z_1(G)\Gamma_2(G)/\Gamma_2(G) \). Since \(\mathcal{R} \) groups contain no nontrivial radicable groups we conclude that \(G/\Gamma_2(G) \) is residually finite.

(ii) Let \(p \) be a prime. Put

\[
G = \langle z, x_i, y_i, \ i = 0, 1, \ldots : z_{i+1}^p = z_i, \ x_i, x_j = [y_i, y_j] = [z_i, z_j] = [z_i, x_j] = [z_i, y_j] = 1, \ [x_i, y_j] = 1 \text{ if } i \neq j, [x_i, y_j] = z_i^p \rangle.
\]
G is a nilpotent group of class 2 with $\Gamma_2(G) = \langle z_0 \rangle$ and
\[Z_1(G) = \langle z_i, i = 0, 1, \ldots \rangle \cong Q_p \]
(where Q_p is the group of all rational numbers whose denominators are powers of p). $Z_1(G)$ is residually finite however it does not satisfy \mathfrak{R}. We will prove that G is not residually finite but it is residually linear. Suppose that $x \mapsto \bar{x}$ is a homomorphism of G into a finite group \bar{G}. Then, by the finiteness of \bar{G}, there exist distinct integers n, m with $\bar{x}_n = \bar{x}_m$. Thus $\bar{1} = [\bar{x}_m, \bar{y}_m] = [\bar{x}_n, \bar{y}_n] = z_0^{pm}$. Since a finite homomorphic image of Q_p has no elements of order p, we have that $z_0 = \bar{1}$ so $z_0 \in R(G)$. In fact $R(G) = Z_1(G)$. Let K be a field containing the p^n-roots of the unity for any integer $n > 1$. In order to prove that G is residually linear it suffices to show that the group $G_n = G/\langle z_0^n \rangle$ is residually K-linear for any integer $n > 1$, since $\cap_{n > 1} \langle z_0^n \rangle = \langle 1 \rangle$.

It follows from the relations of G that $Z_1(G_n)$ is residually p^n-linear. Clearly $Z_1(G_n)$ has finite index in G_n so G_n is residually K-linear and the result follows.

(iii) Let p be a prime. Let G be a group generated by $z, t_1, x_i, y_i, i = 1, 2, \ldots$, subject to the relations
\[x_i, x_j = [y_i, y_j] = [t_i, t_j] = [z, x_i] = [z, y_i] = 1, \]
\[x_i, y_i = t_i^p z, \quad [x_i, y_j] = 1 \quad \text{if } i \neq j, \]
\[t_i, x_i = [t_i, y_i] = z^{p^r}, \quad [t_i, y_j] = 1 \quad \text{if } i \neq j. \]

G is a torsion free nilpotent group of class 3 with center $\langle z \rangle$. Let $x \mapsto \bar{x}$ be a homomorphism of G into a finite group \bar{G}. Then, by finiteness of \bar{G}, there exist distinct integers n, m with $\bar{y}_n = \bar{y}_m$. Thus $\bar{1} = [\bar{y}_n, \bar{y}_m] = [\bar{t}_n, \bar{y}_m]^m$. Suppose that $\bar{z} \neq \bar{1}$. Then $h_p(\bar{z})$, the p-height of \bar{z} in \bar{G}, is finite. Again there exist distinct integers $r, s > h_p(\bar{z})$, with $1 = [\bar{x}_r, \bar{y}_r] = [\bar{x}_s, \bar{y}_s] = t_i^{p^r}$. Hence $\bar{z} = (t_i^{-1})^{p^r}$ and $s < h_p(\bar{z})$, a contradiction. Therefore we have shown that z belongs to the kernels of all homomorphism of G into finite groups so $z \in R(G)$. Finally we show that G is residually K-linear, if K contains, for every n, the p^n-roots of the unity. Define for each integer $n > 1$
\[H_n = \langle t_1^{p^n}, t_2^{p^n}, \ldots, t_{n-1}^{p^n}, z^{p^n}, t_m^{p^n} z \rangle. \]

Clearly H_n is a normal subgroup of G and $H_n \cap \langle z \rangle = \langle z^{p^n} \rangle$. Therefore $\cap_{n > 1} H_n = \langle 1 \rangle$. Then it suffices to prove that the group $G = G/H_n$ is residually K-linear. It is clear that
\[G = \langle Z_1(\bar{G}), \bar{x}_1, \ldots, \bar{x}_{n-1}, \bar{y}_1, \ldots, \bar{y}_{n-1}, \bar{t}_1, \ldots, \bar{t}_{n-1} \rangle. \]

Furthermore, for $i = 1, 2, \ldots, n - 1$, we have
\[t_i^{p^n} = \bar{1} \quad \text{so} \quad [\bar{x}_i^{p^n}, \bar{t}_i] = [\bar{y}_i^{p^n}, \bar{t}_i] = \bar{1}, \]
\[[\bar{x}_i^{p^n}, \bar{y}_i] = [\bar{x}_i, \bar{y}_i]^{p^n} [\bar{x}_i, \bar{y}_i, \bar{x}_i]^{p^2} = t_i^{p^{n+1} z^{p^{n+1} (p^n - 1)/2}}. \]
similarly $[\tilde{y}^p, \tilde{x}] = \tilde{1}$. These relations yield that $\tilde{G}/Z_1(\tilde{G})$ is a torsion group which is finite, since it is finitely generated. The result follows, since $Z_1(\tilde{G})$ is residually K-linear.

I wish to thank Professor D. S. Passman who showed me an example which gave me the inspiration for this paper. Also I should like to thank the referee for his comments.

REFERENCES

SECCIÓ DE MATEMÀTIQUES, UNIVERSITAT AUTÒNOMA DE BARCELONA, BARCELONA, ESPÀÑA