A CHARACTERIZATION OF THE PEDERSEN IDEAL OF $C_0(T, B_0(H))$ AND A COUNTEREXAMPLE

R. M. GILLETTE AND D. C. TAYLOR

Abstract. Let T be a locally compact Hausdorff space, H a complex Hilbert space, and A the C^*-algebra $C_0(T, B_0(H))$. Let A_0 be the Pedersen ideal of A and J_A the two-sided ideal of A consisting of all x having compact support, for which $\sup\{\dim x(t): t \in T\} < \infty$. It is known that $A_0 \subset J_A$, and equality has been conjectured by Pedersen. We give a new characterization of A_0 which enables us to show that the conjecture is false.

1. Introduction. Let A be a C^*-algebra with continuous trace, \hat{A} the spectrum of A, and J_A the set of all x in A such that $\sup\{\dim \pi(x): \pi \in \hat{A}\} < \infty$ and $\pi(x) = 0$ for π outside some compact subset of \hat{A}. In [2, 4.7.24, p. 100] Dixmier asked whether or not J_A is the minimal dense two-sided ideal of A. Pedersen and Petersen answered this question negatively in [9, Proposition 3.6, p. 202]. By using homogeneous algebras whose corresponding fibre bundles have sufficiently many twists, Pedersen and Petersen were able to construct an example of a C^*-algebra A with continuous trace for which J_A is not the minimal dense two-sided ideal of A. In [8, p. 13] Pedersen did conjecture, however, that when $A = C_0(T, B_0(H))$, then J_A is the minimal dense hereditary two-sided ideal of A, or equivalently, the minimal dense two-sided ideal (see [4, 2, p. 168]). Here T is a locally compact Hausdorff space and $B_0(H)$ is the C^*-algebra of compact operators on some Hilbert space H. The minimal dense hereditary (order related) two-sided ideal of a C^*-algebra is commonly referred to as Pedersen’s ideal; this ideal was shown to exist in every C^*-algebra by Pedersen [6, 8].

In §2 of this note we give a new characterization of Pedersen’s ideal of $C_0(T, B_0(H))$. Consequently, in §3 we are able to construct an example that shows Pedersen’s conjecture is false. For basic concepts and definitions we refer the reader to [2], [6], [8].

2. Pedersen’s ideal of $C_0(T, B_0(H))$. Let T be a locally compact Hausdorff space and H a Hilbert space. Let $\mathcal{U} = \mathcal{U}(T)$ denote the set of all ordered triples $n = (U, \alpha, e)$ that satisfy the following:

(i) U is an open subset of T;

(ii) α is a nonnegative continuous function defined on T which has compact support and for which $\{t \in T: \alpha(t) > 0\} \subset U$;

(iii) e is continuous mapping of U into H such that $\|e(t)\| = 1$ for all $t \in U$
(the topology for \(H \) is the norm topology).

For each \(n = (U, \alpha, e) \) define the map \(z_n: T \to B_0(H) \) by

\[
z_n(t) = \begin{cases}
\alpha(t)P_e(t), & t \in U, \\
0 & \text{otherwise},
\end{cases}
\]

where \(P_e(t) \) denotes the projection of \(H \) onto \(H_t \), the subspace of \(H \) generated by \(e(t) \), and \(B_0(H) \) denotes the \(C^* \)-algebra of all compact operators on \(H \). Let \(C_0(T, B_0(H)) \) denote the \(C^* \)-algebra of all continuous maps \(x: T \to B_0(H) \) such that the real map \(t \to \|x(t)\| \) vanishes at infinity. Here the topology for \(B_0(H) \) is the norm topology. Finally, let \(A \) denote the \(C^* \)-algebra \(C_0(T, B_0(H)) \) and \(A_0 \) its Pedersen ideal.

2.1. **Lemma.** Let \(D = \{z_n: n \in \mathcal{N}\} \). Then the following statements hold:

(a) \(D \subseteq A^+ \);
(b) \(D = \{z^{1/2}: z \in D\} \);
(c) \(xDx^* \subseteq D \), for all \(x \in A \);
(d) if \(0 < x < z \), where \(x \in A \) and \(z \in D \), then \(x \in D \);
(e) if \(u \in A \) and \(uu^* \in D \), then \(uu^* \in D \).

Proof. Clearly, (a), (b), and (d) hold. Now let \(x \in A \) and \(n = (U, \alpha, e) \in \mathcal{N} \). It is clear that the map \(t \to x(t)[e(t)] \) is continuous on \(U \); hence, \(V = \{t \in U: 0 < \|x(t)[e(t)]\|\} \) is an open subset of \(T \). Define

\[
f(t) = \left(1/\|x(t)[e(t)]\|\right)(x(t)[e(t)])
\]

for each \(t \in V \). Set

\[
\beta(t) = \begin{cases}
\|x(t)[e(t)]\|^2\alpha(t), & t \in V, \\
0 & \text{otherwise}.
\end{cases}
\]

Clearly, \(\beta(t) \) is a nonnegative continuous function defined on \(T \) with compact support and \(\{t \in T: \beta(t) > 0\} \subseteq V \). Now set \(m = (V, \beta, f) \), which certainly belongs to \(\mathcal{N} \). It is straightforward to show that \(xz_nx^* = z_m \). Hence (c) holds. Finally, suppose \(u \in A \) and \(uu^* = z \in D \). Then \((uu^*)^2 = uu^* \in D \) by (c), hence \(uu^* \in D \) by (b). So (e) holds and our proof is complete.

2.2. **Theorem.** Let

\[
I = \left\{ \sum_{n \in \mathcal{F}} z_n: \mathcal{F} \subseteq \mathcal{N}, \mathcal{F} \text{ finite} \right\}.
\]

Then \(I \) is the minimal-dense, invariant order ideal (face) of \(A^+ \), that is, \(\text{span} \ I \) is the Pedersen ideal of \(A \).

Proof. Let \(x \in A^+ \) be so that \(x < \sum_{i=1}^p z_n \) for some finite subset \(n_1, n_2, \ldots, n_p \) of \(\mathcal{N} \). By the Riesz decomposition property [7, Corollary 2, p. 267], there are elements \(u_1, u_2, \ldots, u_p \) in \(A \) so that \(x = u_1u_1^* + \cdots + u_pu_p^* \) and \(u_i^*u_i < z_n, i = 1, 2, \ldots, p \). It follows from 2.1(d), (e) that \(x \in I \), so \(I \) is an order ideal (face) of \(A^+ \). Furthermore, by 2.1(c), \(I \) is an invariant order ideal of \(A^+ \) and by [2, 10.5.3, p. 199], \(\text{span} \ I \) is dense in \(A \). Thus \(I \) is a dense invariant order ideal, so \(A_0^+ \subseteq I \). To show \(I = A_0^+ \), it suffices to observe \(D \subseteq A_0 \). Let \(n = (U, \alpha, e) \in \mathcal{N} \) and choose \(h_0 \in H \) so that \(\|h_0\| = 1 \).

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
Without loss of generality we may assume \(\|a^{1/2}\|_\infty < \frac{1}{2} \). Now set

\[
f(t) = \begin{cases} \frac{h_0 - a^{1/2}(t)e(t)}{\|h_0 - a^{1/2}(t)e(t)\|}, & t \in U, \\ h_0, & t \notin U, \end{cases}
\]

and

\[
g(t) = \begin{cases} \frac{h_0 + a^{1/2}(t)e(t)}{\|h_0 + a^{1/2}(t)e(t)\|}, & t \in U, \\ h_0, & t \notin U. \end{cases}
\]

Clearly, the maps \(t \mapsto f(t) \) and \(t \mapsto g(t) \) are continuous on all of \(T \). From [8, p. 8], we see that, for each \(\beta \in C_0(T)^+ \), \(\beta P_f \) and \(\beta P_g \) belong to \(A_0^+ \). So choose \(\beta \in C_0(T)^+ \) with \(\beta(t) = 1 \), \(t \in \text{supp} \alpha \), and \(\|\beta\|_\infty < 1 \). Now let \(h \in H \) and let \(t \in T \) be such that \(\alpha(t) > 0 \). Note

\[
\langle \alpha(t)P_e(t)[h], h \rangle = \alpha(t)|\langle h, e(t) \rangle|^2
\]

\[
\leq 2\alpha(t)|\langle e(t), h \rangle|^2 + 2|\langle h, h_0 \rangle|^2
\]

\[
= |\langle h, h_0 \rangle|^2 - 2\text{Re} \, \alpha^{1/2}(t)|\langle h, e(t) \rangle|\langle h_0, h \rangle + \alpha(t)|\langle e(t), h \rangle|^2
\]

\[
+ |\langle h, h_0 \rangle|^2 + 2\text{Re} \, \alpha^{1/2}(t)|\langle h, e(t) \rangle|\langle h_0, h \rangle + \alpha(t)|\langle e(t), h \rangle|^2
\]

\[
= \|h_0 - \alpha^{1/2}(t)e(t)\|^2|\langle h, f(t) \rangle|^2
\]

\[
+ \|h_0 + \alpha^{1/2}(t)e(t)\|^2|\langle h, g(t) \rangle|^2
\]

\[
< 4|\langle h, f(t) \rangle|^2 + 4|\langle h, g(t) \rangle|^2
\]

\[
= 4\langle P_f(t)[h], h \rangle + 4\langle P_g(t)[h], h \rangle
\]

\[
= 4\langle \beta(t)P_f(t)[h], h \rangle + 4\langle \beta(t)P_g(t)[h], h \rangle.
\]

Thus \(z_n < 4\beta P_f + 4\beta P_g \). Since \(A_0^+ \) is an order ideal (face) of \(A^+ \), \(z_n \in A_0^+ \). So \(D \subseteq A_0 \) and our proof is complete.

3. Examples. We now detail the construction of a compact Hausdorff space \(T \) and an element \(x \) of the \(C^* \)-algebra \(A = C(T, B_0(H)) \) which does not belong to the Pedersen ideal of \(A \), even though each \(x(t) \) is a positive operator on \(H \) having dimension at most 1. The Hilbert space \(H \) is required to be infinite dimensional.

The building blocks for the space \(T \) are the complex projective spaces \(P^m \), which are defined as follows: \(P^m \) is the set of all 1-dimensional subspaces of \(C^{m+1} \), topologized as a quotient space of \(C^{m+1} \sim \{0\} \). The space \(P^m \) is a compact metric space. By identifying \(C^{m+1} \) with a fixed subspace of \(H \), we can view a point \(\pi \) of \(P^m \) as a 1-dimensional subspace of \(H \). To this subspace \(\pi \) we assign the projection operator \(x_m(\pi) \) which projects \(H \) onto \(\pi \). Since \(P_h \)
(the projection of H onto the span of h) is continuous in h, for $h \in H \sim \{0\}$, and since $\chi_m(\pi) = P_h$ whenever $h \in \pi \sim \{0\}$, it follows that χ_m is a continuous function from P^m to $B_0(H)$. Moreover, χ_m belongs to the Pedersen ideal of the C^*-algebra $C(P^m, B_0(H))$, because χ_m is positive and $\chi_m^2 = \chi_m$. The characterization of the Pedersen ideal given in the previous section applies to χ_m with the result that for some finite sequence $n(1), \ldots, n(k)$ in $\mathcal{P}(P^m)$,

$$\chi_m = \sum_{i=1}^k \chi_{n(i)}.$$

Let $\gamma(\chi_m)$ denote the smallest integer k for which such a sequence $n(1), \ldots, n(k)$ exists. We will now prove that $\gamma(\chi_m) > m + 1$. This is the key to our example, and it is here that global topological properties of P^m enter.

Let γ_{m+1} be the canonical complex line bundle over P^m. The total space E of γ_{m+1} consists of all pairs (π, ν) such that $\pi \in P^m$ and $\nu \in \mathcal{P}$. The projection $p: E \to P^m$ is defined by $p(\pi, \nu) = \pi$. Suppose now that (1) holds with $n(i) = (U_i, \alpha_i, \nu_i)$, and let V_i be the open subset of U_i on which α_i is strictly positive. The sets V_1, V_2, \ldots, V_k cover P^m because χ_m is never zero. Since χ_m has rank 1 everywhere, it follows from (1) that if $\pi \in V_i$, then $\chi_m(\pi) = P_{\alpha_i}(\pi)$; or what amounts to the same thing, $\nu_i(\pi) \in \mathcal{P}$. We conclude that $(\pi, \nu_i(\pi)) \in E$ and $p(\pi, \nu_i(\pi)) = \pi$ whenever $\pi \in V_i$, which is precisely the statement that the bundle γ_{m+1} admits a cross-section over V_i. Since this cross-section is never zero, γ_{m+1} is trivial over V_i [3, Exercise 1, p. 37]. Because each restriction $\gamma_{m+1}|V_i$ is trivial $(i = 1, 2, \ldots, k)$ there is a mapping $f: P^m \to P^{k-1}$ such that $\gamma_{m+1} \equiv f^*\gamma_1$, where $f^*\gamma_1$ is the induced bundle [3, Proposition 5.8, p. 31, and the proof of Theorem 5.5, p. 30]. The Chern class $c_1(\gamma_1)$ generates the integral cohomology ring $H^*(P^{k-1}, \mathbb{Z})$ and is carried by the induced cohomology homomorphism onto the Chern class $c_1(f^*\gamma_1)$ [3, pp. 232–233], [5, p. 160]:

$$f^*c_1(\gamma_1) = c_1(f^*\gamma_1) = c_1(\gamma_{m+1}).$$

We can conclude from (2) that $k > m$ because the kth power of $c_1(\gamma_1)$ is zero. This completes the proof that $\gamma(\chi_m) > m + 1$. (We are grateful to the referee for suggesting this proof.) We summarize our results in a theorem.

3.1. Theorem. Assume that H is infinite dimensional. For each positive integer m, the C^*-algebra $C(P^m, B_0(H))$ contains an element χ_m such that $\chi_m(\pi)$ is a 1-dimensional projection for each $\pi \in P^m$, and for which $\gamma(\chi_m) > m + 1$.

Returning to the construction of our example, define T to be the one-point compactification of the disjoint union of the P^m, $m = 1, 2, \ldots$:

$$T = \{\omega\} \cup \bigcup_{m=1}^{\infty} P^m.$$

Define an element x of the C^*-algebra $A = C(T, B_0(H))$ by the formula
For each $t \in T$, $x(t)$ is positive and has dimension at most 1. However, x cannot belong to the Pedersen ideal of A because if it does, there must exist a finite sequence $n(1), \ldots, n(k)$ in $\mathcal{M}(T)$ such that

$$x = \sum_{i=1}^{k} z_{n(i)}$$

and by choosing an integer $m > k$ and restricting the terms of (3) to P^m, we obtain a sum of form (1) with $k < m$, contrary to Theorem 3.1. (When restricting the terms of (3) to P^m we must also restrict the members of each triple $n(i)$ to P^m.) We state these results in the form of a theorem.

3.2. Theorem. Assume that H is an infinite dimensional Hilbert space. There exists a compact metric space T such that $C(T, B_0(H))$ contains a positive x having dimension everywhere less than or equal to 1, which does not belong to the Pedersen ideal of $C(T, B_0(H))$.

It is worth pointing out that this example shows us the role of the mappings e_i in our characterization of the Pedersen ideal. The example x constructed above can be written in the form

$$x(t) = \begin{cases} m^{-1}x_m(t) & \text{if } t \in P^m, \\ 0 & \text{if } t = \omega. \end{cases}$$

where P is a continuous projection valued map on $T \sim \{\omega\}$, and where $\alpha \in C(T)$.

REFERENCES

7. _____, A decomposition theorem for C^*-algebras, Math. Scand. 22 (1968), 266-268.
8. _____, C^*-integrals, an approach to non-commutative measure theory, Copenhagen Univ., Copenhagen.

DEPARTMENT OF MATHEMATICS, MONTANA STATE UNIVERSITY, BOZEMAN, MONTANA 59715