POSITION OF COMPACT HYPERSURFACES OF THE \(n \)-SPHERE

JAMES R. WASON

Abstract. Let \(S^n \) be the Euclidean sphere of dimension \(n \). Let \(p \) and \(q \) be antipodal points on \(S^n \), and, for nonnegative \(h \), let \(C(p, h) \), \(C(q, h) \) be the hyperspheres of constant mean curvature \(h \) centered at \(p \) and \(q \), respectively. Then any closed hypersurface in \(S^n \) with mean curvature bounded by \(h \) must have a point in the 'tropical' region bounded by \(C(p, h) \) and \(C(q, h) \).

1. Introduction. Let \(S^n \) be the \(n \)-sphere with the standard Riemannian metric induced by inclusion in \(\mathbb{R}^{n+1} \). For \(p \in S^n \), let \(C(p, k) \) be the \((n - 1)\)-sphere of constant mean curvature \(k \), centered at \(p \). Let \(D(p, k) \) be the component of \(S^n \) \(-\ C(p, k) \) containing \(p \). We prove:

1.1 Theorem. Let \(M \) be a hypersurface in \(S^n \) which is smooth, compact, and without boundary. Let \(H \) be the mean curvature function on \(M \). If \(|H| < k \), then for any two antipodal points \(p \) and \(q \) in \(S^n \), there is a point of \(M \) lying in the set \(A(p, q, k) = S^n \) \(-\ (D(p, k) \cup D(q, k)) \).

Note that the boundary of \(A(p, q, k) \) is just \(C(p, k) \cup C(q, k) \). If \(M \) is minimal, then \(H \equiv 0 \), and we have

1.2 Corollary. Let \(M \) be a compact, oriented, minimal hypersurface without boundary in \(S^n \). Then \(M \) must intersect each great \((n - 1)\)-sphere.

The Corollary may also be proved using methods developed by H. B. Lawson [2].

2. Proof of the Theorem. We prove first the following

Lemma. If \(|H| < k \), then there is a point of \(M \) lying in \(S^n \) \(-\ D(p, k) \).

Proof. Suppose \(M \) lies entirely in \(D(p, k) \). Since \(M \) is compact, then it must also lie in the closure of \(D(p, r) \) with \(r > k \). Shrink \(D(p, r) \) until \(C(p, r) \) first touches \(M \). Then at some point \(m \), \(M \) is tangent to \(C(p, r) \). Since \(M \) is tangent from within \(D(p, r) \), it follows that \(H(m) > r > k \). But this contradicts \(|H| < k \).\(^2\)

The Theorem now follows by application of the Lemma to the antipodal points \(p \) and \(q \).

Received by the editors February 20, 1976 and, in revised form, April 4, 1977.

\(^1\)Work partially supported by NSF grant GP22928.

\(^2\)The author would like to thank the referee for this abbreviation of his original argument.
REFERENCES

Wellesley, Wellesley, Massachusetts 02181