Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Proceedings of the American Mathematical Society
Proceedings of the American Mathematical Society
ISSN 1088-6826(online) ISSN 0002-9939(print)


On a classification of plane domains for Hardy classes

Author: Shōji Kobayashi
Journal: Proc. Amer. Math. Soc. 68 (1978), 79-82
MSC: Primary 30A78
MathSciNet review: 0486533
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: For every positive nubmer p, let $ {O_p}$ denote the class of plane domains W for which the Hardy class $ {H_p}(W)$ contains no nonconstant functions, and $ O_p^ - = \cup \{ {O_q}:0 < q < p\} $. In this paper it is proved that $ {O_p}$ strictly contains $ O_p^ -$ if $ p \geqslant 1$.

References [Enhancements On Off] (What's this?)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30A78

Retrieve articles in all journals with MSC: 30A78

Additional Information

PII: S 0002-9939(1978)0486533-9
Keywords: Hardy class, harmonic majorant, subharmonic function, superharmonic function
Article copyright: © Copyright 1978 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia