Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Maximal separable subfields

Author: Bonnie Page Danner
Journal: Proc. Amer. Math. Soc. 68 (1978), 125-131
MSC: Primary 12F15
MathSciNet review: 0460300
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $ L/K$ is a finitely generated separable field extension of characteristic $ p \ne 0$ and M is an intermediate field such that $ L/M$ is inseparable, it is proved there exist subfields S of M maximal with respect to the property that $ L/S$ is separable. These maximal separable subfields, denoted S-subfields for $ L/M$, are characterized in two ways.

(1) Let $ L/S$ be a separable field extension. Then S is a S-subfield for $ L/M$ if and only if $ S({L^p}) \supseteq M$ and S is algebraically closed in M.

(2) If $ L/S$ is separable, S is a S-subfield for $ L/M$ if and only if the inseparability of $ L/M$ is equal to the transcendence degree of $ M/S$.

A S-subfield for $ L/M$ is constructed using a maximal subset of a relative p-basis for $ M/K$ which remains p-independent in L. It is proved that there is a unique S-subfield for $ L/M$ if and only if $ S/K$ is algebraic for some S.

References [Enhancements On Off] (What's this?)

  • [1] Jean Dieudonné, Sur les extensions transcedants separables, Summa Brasil Math. 2 (1947), 1-20. MR 0025441 (10:5c)
  • [2] Nathan Jacobson, Lectures in abstract algebra. III, Van Nostrand, Princeton, N.J., 1964. MR 0172871 (30:3087)
  • [3] H. Kraft, Inseparable Korperweiterrungen, Comment. Math. Helv. 45 (1970), 110-118. MR 0260709 (41:5333)
  • [4] Serge Lang, Algebra, Addison-Wesley, Reading, Mass., 1965. MR 0197234 (33:5416)
  • [5] Saunders Mac Lane, Modular fields. I: Separating transcendency bases, Duke Math. 5 (1939), 372-396. MR 1546131

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 12F15

Retrieve articles in all journals with MSC: 12F15

Additional Information

Keywords: Separable and inseparable field extensions, p-bases
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society