ELEMENTARY SURGERY MANIFOLDS AND THE ELEMENTARY IDEALS

J. P. NEUZIL

Abstract. We prove the following: If M^3 is a closed 3-manifold obtained by elementary surgery on a knot K in S^3 and $H_1(M^3)$ is a nontrivial cyclic group, then the first elementary ideal $\pi_1(M^3)$ in the integral group ring of $H_1(M^3)$ is the principal ideal generated by the polynomial of K.

In this paper we study the 3-manifolds which are obtained by elementary surgery along a knot in S^3 and which are not homology spheres. This allows us to use the free calculus. Our main result is the following: If M^3 is a closed 3-manifold obtained by elementary surgery along a knot K in S^3 and $H_1(M^3)$ is a nontrivial cyclic group C, then the first elementary ideal of $\pi_1(M^3)$ in the integral group ring of C is the principal ideal generated by the first knot polynomial of K.

We will use the notation of the free calculus as developed in Chapter VII of [2]. For $n > 0$, we will use \mathbb{Z}_n to denote the cyclic group of order n, and \mathbb{Z}_0 will be the infinite cyclic group. The generator of \mathbb{Z}_n will be t. $J(\mathbb{Z}_n)$ will denote the integral group ring of \mathbb{Z}_n, thus the elements of $J(\mathbb{Z}_n)$ for $n > 0$, are finite sums $a_0 + a_1t + \cdots + a_{n-1}t^{n-1}$ where each a_j is an integer. We will use τ to denote the trivializer of $J(\mathbb{Z}_n)$, that is, $\tau: J(\mathbb{Z}_n) \to \mathbb{Z}$ is defined by $\tau(t) = 1$, so that $\tau(f(t)) = f(1)$. For $n > 0$, Λ_n will denote the element $\sum_{i=0}^{n-1} t^i$ of $J(\mathbb{Z}_n)$ and we let $\Lambda_0 = 0$. Note that $t^k \Lambda_n = \Lambda_n$ for all k, hence, for any $f(t) \in J(\mathbb{Z}_n), \ f(t) \Lambda_n = \tau(f(t)) \Lambda_n = f(1) \Lambda_n$. If $f(t) \in J(\mathbb{Z}_n)$, $(f(t))$ will denote the principal ideal generated by $f(t)$.

We use $\langle x_1, \ldots, x_k \mid R_1, \ldots, R_m \rangle$ to denote a group given by generators and relations. Let $G = \langle x_1, \ldots, x_k \mid R_1, \ldots, R_m \rangle$. Suppose the abelianization of G is \mathbb{Z}_n. We use ϕ to denote the corresponding homomorphism of the free group $\langle x_1, \ldots, x_k \rangle$ onto \mathbb{Z}_n. Thus the Alexander matrix of G has $\phi(\partial R_i / \partial x_j)$ as the entry in the ith row and the jth column. We let $E_n(G)$ denote the nth elementary ideal of G as defined in [2, p. 101]. If K is a knot in S^3, we let $E_n(\pi_1(S^3 - K)) = E_n(K)$. For a 3-manifold M^3, we let $E_n(\pi_1(M^3)) = E_n(M^3)$. Let K be a knot in S^3 and let N be a solid tubular neighborhood of K. Then N is a solid torus. Let (m, l) be a meridian-longitude pair for N. (This

Received by the editors March 15, 1976 and, in revised form, February 28, 1977.

© American Mathematical Society 1978
means that \(m \) and \(l \) are simple closed curves on \(\partial N \), \(m \) bounds a disk in \(N \) but not on \(\partial N \), and \(l \) is a homology generator of \(N \). In addition, assume that \(l \) is homologically trivial in \(\text{Cl}(S^3 - N) \). The elementary surgery manifold \(M^3(K; n, s) \) is constructed as follows: remove \(\text{Int} N \) from \(S^3 \) and sew in a new solid torus \(T \) so that a meridian of \(T \) is sewn to a curve \(C \) which is homologous to \(nm + sl \) on \(\partial N \). If \(n \neq 0 \), \(n \) and \(s \) must be relatively prime and if \(n = 0 \), we must have \(s = \pm 1 \). Note that \(H_1(M^3(K; n, s)) = \mathbb{Z}_m \); hence in this paper we restrict our attention to the case \(|n| \neq 1 \). Note also that \(\pi_1(M^3(K; n, s)) \) may be obtained by adding to \(\pi_1(S^3 - K) \) a relation which trivializes the element of \(\pi_1(S^3 - K) \) corresponding to the curve \(C \). Since \(M^3(K; n, s) \) and \(M^3(K; -n, -s) \) are homeomorphic, we will assume throughout that \(n \) is nonnegative. If \(J \) is a simple closed curve in a space \(X \), we will use \(J \) to denote the simple closed curve itself, the corresponding element of \(\pi_1(X) \) and the corresponding element of \(H_1(X) \). Finally, if \(S \) is a set of integers, we will use \(\text{GCD} S \) to denote the greatest common divisor of the elements in \(S \). The proofs of Theorems 1 and 2 given here were suggested to the author by the referee and represent a substantial improvement over the original proofs.

Theorem 1. The Alexander matrix of \(\pi_1(M^3(K; n, s)) \) is obtained from the matrix of \(\pi_1(S^3 - K) \) by adjoining a new row with one entry \(\Lambda_n \) and the rest zeros. In addition, the other entries in the column containing \(\Lambda_n \) are all zeros.

We should note here that when we say that the Alexander matrix is a certain matrix, we always mean up to equivalence as defined in [2, p. 101].

Proof of Theorem 1. Let \(G = \pi_1(S^3 - K) \) and let \(G' \) denote the commutator subgroup of \(G \). \(G \) has a presentation \(\langle a, x_1, \ldots, x_m | R_1, \ldots, R_m \rangle \), where \(a \) is a meridian of \(K \), \(x_j \in G' \) for \(1 < j < m \), and \(\phi(\partial R_i/\partial a) = 0 \) for \(1 < i < m \) [3, p. 415]. Hence \(G \) has Alexander matrix \((\phi(\partial R_i/\partial x_j))_0 \). Now the matrix of \(\pi_1(M^3(K; n, s)) \) is obtained by adding a row \((\phi(\partial S/\partial x_j), \phi(\partial S/\partial a)) \) where \(S \) is the relator \(a^n \). Since \(l \) is the boundary of a Seifert surface of \(K \), \(l \in G'' \), hence \(\phi(\partial l/\partial a) = \phi(\partial l/\partial x_j) = 0 \). Therefore, \(\phi(\partial S/\partial a) = \Lambda_n \) and \(\phi(\partial S/\partial x_j) = 0 \), hence the Alexander matrix of \(\pi_1(M^3(K; n, s)) \) is

\[
\begin{pmatrix}
\phi(\partial R_i/\partial x_j) & 0 \\
0 & \Lambda_n
\end{pmatrix}.
\]

This completes the proof of Theorem 1.

Theorem 2. The first elementary ideal \(E_1(M^3) \) of \(\pi_1(M^3(K; n, s)) \) is the principal ideal in \(J(\mathbb{Z}_n) \) generated by \(\Delta_1(t) \), the first knot polynomial of \(K \).

Proof of Theorem 2. The matrix obtained in Theorem 1 is an \((m + 1) \times (m + 1) \) matrix and \(E_1(M^3) \) is generated by \(m \times m \) subdeterminants of this matrix. Hence, \(E_1(M^3) \) is generated by \(\Delta_1(t) \) and \(f_j(t)\Lambda_n \), \(1 < j < \mu \), where \(f_1(t), \ldots, f_\mu(t) \) are the nontrivial \((m - 1) \times (m - 1) \) subdeterminants of the Alexander matrix of \(K \), that is, the generators of \(E_2(K) \). Therefore,
\[E_1(M^3) = (\Delta_1(t)) + \Lambda_n \cdot E_2(K). \]

But
\[\Lambda_n \cdot E_2(K) = \Lambda_n \cdot \tau(E_2(K)) = \Lambda_n \cdot Z = (\Lambda_n). \]

Now, for any knot \(K \), \(\Delta_1(1) = \pm 1 \), hence
\[\Lambda_n = (\Delta_1(1))^2 \Lambda_n = \Delta_1(t) \cdot \Delta_1(t) \cdot \Lambda_n \in (\Delta_1(t)). \]

Therefore,
\[E_1(M^3) = (\Delta_1(t)) + (\Lambda_n) = \Delta_1(t). \]

This completes the proof of Theorem 2.

We finish with two corollaries to Theorem 2. The first is an alternate proof of Theorem 1 of [4].

Corollary 1. If \(K \) is a knot in \(S^3 \) with nontrivial polynomial \(\Delta_1(t) \) then \(M^3(K; n, s) \) is never topologically equivalent to \(S^2 \times S^1 \).

Proof. If \(M^3(K; n, s) = S^2 \times S^1 \) then \(H_1(M^3) = \pi_1(M^3) = \mathbb{Z}_0 \); hence \(n = 0 \) and \(s = \pm 1 \). But the first elementary ideal of \(J(\mathbb{Z}_0) \) of the infinite cyclic group \(\mathbb{Z}_0 \) is all of \(J(\mathbb{Z}_0) \) but, by Theorem 2, \(E_1(M^3) = (\Delta_1(t)) \) and \((\Delta_1(t)) \neq J(\mathbb{Z}_0) \) since \(\Delta_1(t) \) is nontrivial. Hence \(\pi_1(M^3) \neq \pi_1(S^2 \times S^1) \), so \(M^3(K; n, s) \neq S^2 \times S^1 \).

Before stating the next corollary, we note that alternating knots with nontrivial polynomials satisfy the hypotheses. See [1] or [5].

Corollary 2. Suppose \(K \) is a knot in \(S^3 \) with polynomial \(\Delta_1(t) = a_0 + a_1t + a_2t^2 + \cdots + a_pt^p \). Let \(\alpha = a_0 + a_2 + a_4 + \cdots \), that is, \(\alpha \) is the sum of the coefficients of even powers of \(t \) in \(\Delta_1(t) \). If \(|\alpha| > 1 \) then \(\pi_1(M^3(K; n, s)) \) is never a finite cyclic group of even order.

Proof. In this proof, \((\Delta_1(t))^n \) will denote the principal ideal in \(J(\mathbb{Z}_n) \) generated by \(\Delta_1(t) \). Now if \(\pi_1(M^3) \) is cyclic then \(\pi_1(M^3) = H_1(M^3) = \mathbb{Z}_0 \); hence it suffices to show that \(\pi_1(M^3(K; n, s)) \neq \mathbb{Z}_n \) for even \(n \). To show this it suffices to show that \((\Delta_1(t))^n \neq J(\mathbb{Z}_n) \) for even \(n \), since the first elementary ideal in \(J(\mathbb{Z}_n) \) of \(\pi_1(M^3) \) is \((\Delta_1(t))^n \) and the first elementary ideal in \(J(\mathbb{Z}_n) \) of \(\mathbb{Z}_n \) is all of \(J(\mathbb{Z}_n) \). But to show \((\Delta_1(t))^n \neq J(\mathbb{Z}_n) \) for even \(n \), it suffices to show \((\Delta_1(t))^2 \neq J(\mathbb{Z}_2) \), because, for even \(n \), there is a ring homomorphism of \(J(\mathbb{Z}_n) \) onto \(J(\mathbb{Z}_2) \) which takes \((\Delta_1(t))^n \) onto \((\Delta_1(t))^2 \).

Now suppose the contrary, that is, suppose \((\Delta_1(t))^2 = J(\mathbb{Z}_2) \). In \(J(\mathbb{Z}_2) \), \(\Delta_1(t) = \alpha + (\varepsilon - \alpha)t \) where \(\varepsilon = \pm 1 \). Now if \((\Delta_1(t))^2 = J(\mathbb{Z}_2) \), then there is an element \(f(t) \) of \(J(\mathbb{Z}_2) \) such that \(f(t)\Delta_1(t) = 1 \). Say \(f(t) = x + yt \) where \(x \) and \(y \) are integers. Then
\[1 = f(t)\Delta_1(t) = [\alpha x + (\varepsilon - \alpha)y] + [(\varepsilon - \alpha)x + ay]t; \]

hence \(\alpha x + (\varepsilon - \alpha)y = 1 \) and \((\varepsilon - \alpha)x + ay = 0 \). Solving simultaneously, we obtain \(x = \alpha/(2\varepsilon - \alpha) \) which cannot be an integer unless \(|\alpha| < 1 \), which contradicts the hypothesis.
REFERENCES

DEPARTMENT OF MATHEMATICS, KENT STATE UNIVERSITY, KENT, OHIO 44242