THE PERFECT nTH POWER WHICH DIVIDES A NONZERO POLYNOMIAL

ROGER CHALKLEY

Abstract. In terms of rational operations, an algorithm is given to obtain the monic polynomial of maximal degree whose nth power divides a given nonzero polynomial.

Let n be an integer > 2; let $F(X)$ be a nonzero polynomial in a single variable X over a field E of characteristic p such that either $p = 0$ or $p > \deg(F(X))$; and let \overline{E} be an algebraic closure of E. Then, there exist unique polynomials $G(X)$ and $H(X)$ over E such that: $G(X)$ is monic,

$$F(X) = (G(X))^n H(X),$$

and the multiplicity of each root of $H(X)$ in \overline{E} is less than n. We shall describe an algorithm to express $G(X)$ and $H(X)$ in terms of $F(X)$ by means of rational operations. There are applications in [1] for the special case where $n = 2$.

As a first step, we set $d_0(X) = F(X)$ and

$$d_k(X) = \text{g.c.d.} \left(d_{k-1}(X), F^{(k)}(X) \right) \quad \text{for} \quad k = 1, 2, \ldots.$$

Since $d_k(X)$ is the greatest common divisor of $d_{k-1}(X)$ and the kth derivative $F^{(k)}(X)$ of $F(X)$, $d_k(X)$ is monic and there exists a least positive integer m such that

$$d_k(X) = 1 \quad \text{for} \quad k = mn, mn + 1, mn + 2, \ldots.$$

We set

$$(1) \quad q_k(X) = \frac{d_{nk}(X)(d_{nk+n}(X))^{n-1}}{(d_{nk+n-1}(X))^n} \quad \text{for} \quad k = 0, 1, 2, \ldots.$$

Lemma. For $k = 0, 1, 2, \ldots, q_k(X)$ is a nonzero polynomial in X over E each of whose roots has multiplicity less than n. Moreover, for $r \neq s$, $q_r(X)$ and $q_s(X)$ are relatively prime.

Proof. There exists a factorization

$$d_{nk}(X) = \varepsilon_0(X - \theta_1)^{i_1} \cdots (X - \theta_\mu)^{i_\mu} \psi_k(X)$$

over \overline{E} such that: $i_1, i_2, \ldots, i_\mu > n$; $\varepsilon_0 \neq 0$; $\psi_k(X)$ is a monic polynomial.
whose roots are distinct from $\theta_1, \theta_2, \ldots, \theta_\mu$, and each root of $\psi_k(X)$ has multiplicity less than n. (In case $\mu = 0$, the product

$$(X - \theta_1)^i \cdots (X - \theta_\mu)^i$$

is to be replaced by 1.) We obtain

$$d_{nk+n-1}(X) = (X - \theta_1)^{i_1-(n-1)} \cdots (X - \theta_\mu)^{i_\mu-(n-1)},$$

$$d_{nk+n}(X) = (X - \theta_1)^{i_1-n} \cdots (X - \theta_\mu)^{i_\mu-n},$$

and $q_k(X) = \epsilon_0\psi_k(X)$. Since the divisibility in (1) occurs over E, $q_k(X)$ is a polynomial in X over E each of whose roots in \overline{E} has multiplicity less than n. If ξ is a root of $q_k(X)$ in \overline{E}, then $\psi_k(\xi) = 0$, $d_{n(k+j)}(\xi) \neq 0$ for $j = 1, 2, \ldots$, and $q_{k+j}(\xi) \neq 0$ for $j = 1, 2, \ldots$. Thus, for $r \neq s$, $q_r(X)$ and $q_s(X)$ have no common roots. This completes the proof.

Theorem. The polynomials $G(X)$ and $H(X)$ defined over E by

$$G(X) = \prod_{k=0}^{m} \frac{d_{nk-1}(X)}{d_{nk}(X)}$$

and

$$H(X) = \prod_{k=0}^{m} q_k(X)$$

are such that $F(X) = (G(X))^nH(X)$, $G(X)$ is monic, and the multiplicity of each root of $H(X)$ in \overline{E} is less than n.

Proof. For $k = 1, 2, \ldots$, both $d_{nk-1}(X)$ and $d_{nk}(X)$ are monic and $d_{nk}(X)$ divides $d_{nk-1}(X)$ over E. Thus, $G(X)$ is monic. By the lemma, the multiplicity of any root of $H(X)$ is less than n. Finally, we have $d_j(X) = 1$, for $j \geq mn$, and

$$(G(X))^nH(X) = \left(\prod_{k=0}^{m} \frac{(d_{nk+n-1})^n}{(d_{nk+n})^n} \right) \left(\prod_{k=0}^{m} \frac{d_{nk}(d_{nk+n})^{n-1}}{(d_{nk+n-1})^{n-1}} \right)$$

$$= \prod_{k=0}^{m} \frac{d_{nk}}{d_{nk+n}} = d_0 = F(X).$$

This completes the proof.

References