A SIMPLE NOETHERIAN RING NOT MORITA EQUIVALENT TO A DOMAIN

J. T. STAFFORD

ABSTRACT. An example of Zalesskii and Neroslavskii is used to produce an example of a simple ring that is not Morita equivalent to a domain.

In [5] an example is given of a simple Noetherian ring with divisors of zero but without nontrivial idempotents. In this note we show that this example also gives a negative answer to the important question of whether simple Noetherian rings are Morita equivalent to domains, thus answering [1, Question 1, p. 113].

The ring is constructed in the following way. Let \(k \) be a field of characteristic two. Define \(R_1 = k(y)[X, X^{-1}] \) for indeterminates \(y \) and \(X \). Let \(g \) be the \(k(y) \)-automorphism of \(R_1 \), defined by \(g(X) = yX \) and let \(R_2 \) be the twisted group ring \(R_1(\langle g \rangle) \); i.e. as an additive group, \(R_2 \) is isomorphic to the ordinary group ring but multiplication is defined by \(rg = g^r g \) for \(r \in R_1 \). Let \(h \) be the \(k(y) \)-automorphism of \(R_2 \) defined by \(h(X) = X^{-1} \) and \(h(g) = g^{-1} \) and define \(S \) to be the twisted group ring \(R_2(\langle h \rangle) \). The ring \(S \) was first constructed in [5], where the following was proved.

Theorem 1. \(S \) is a simple Noetherian ring, not a domain, such that the only idempotents of \(S \) are 0 and 1.

In [5], \(S \) was actually defined as a localisation of a group ring over \(k \). However, the characterisation given here is more convenient as it provides an easy method of calculating the Krull dimension of \(S \), written \(\text{Kdim } S \) (for our purposes the following definition suffices. Given a prime ring \(R \) then \(\text{Kdim } R = 1 \) if \(R \) is not Artinian but \(R/I \) is an Artinian module for any essential one-sided ideal \(I \)).

Theorem 2. \(\text{Kdim } S = 1 \).

Proof. Clearly \(R_1 \) is hereditary. Since \(g \) leaves no ideal of \(R_1 \) invariant, \(R_2 \) is hereditary by [3, Theorem 2.3]. Thus \(\text{Kdim } R_2 = 1 \) (see for example [2, Theorem 1.3]). But \(S \) is finitely generated as a left or right \(R_2 \)-module. So \(\text{Kdim } S < 1 \) and clearly we have equality.
This result enables us to use the results of [4] to show that S has the properties described in the title.

Theorem 3. S is a simple Noetherian ring that is not Morita equivalent to a domain.

Proof. Suppose S is Morita equivalent to a domain A. Then $\text{Kdim } A = 1$ by Theorem 2. Let P be the image of S under the equivalence of the right module categories. Since S is not a domain, P is not isomorphic to a right ideal of A. Thus, with $\text{rk } P$ being the rank of the biggest free module that can be embedded in P, we have $\text{rk } P > 2 = 1 + \text{Kdim } A$. So by [4, Theorem 2.1], $P \cong Q \oplus A$ for some nonzero module Q. But then $S \cong I \oplus J$ for some nonzero right ideals I and J of S. This implies that S has nontrivial idempotents, which contradicts Theorem 1.

Since $(1 + h)S$ has a periodic projective resolution, S has infinite global dimension. Thus it is still possible that any simple Noetherian ring of finite global dimension is Morita equivalent to a domain. Indeed, using [4], it is possible to show that a simple Noetherian ring R, with finite global dimension and $\text{Kdim } R = 1$, is Morita equivalent to a domain.

References

Department of Mathematics, Brandeis University, Waltham, Massachusetts 02154