ON THE SEMI-CANONICAL PROPERTY IN THE PRODUCT SPACE $X \times I$

A. OKUYAMA AND Y. YASUI

Abstract. As one of the several properties in generalized metric spaces, the semi-canonical property has been discussed from the viewpoint of the extension of mappings. In this paper, that property will be discussed in product space $X \times I$ and reduced to a property of X.

1. Introduction. By a pair (X, A) we mean a topological space X with a closed subset A of X. Let (X, A) be a pair. As in [6], a collection $\mathcal{V} = \{V_\lambda: \lambda \in \Lambda\}$ of open subsets of X is called a semi-canonical cover for (X, A) if

1) $\bigcup_{\lambda \in \Lambda} V_\lambda = X - A$, and
2) for each $x \in A$ and each neighborhood U of x in X there exists a neighborhood W of x in X such that $\text{St}(W, \mathcal{V}) \subseteq U$, where

$$\text{St}(W, \mathcal{V}) = \bigcup \{ V \in \mathcal{V}: V \cap W \neq \emptyset \}$$

denotes the star of W with respect to \mathcal{V}.

If a semi-canonical cover exists for (X, A), (X, A) is called a semi-canonical pair.

It was proved by D. Hyman ([6], [7]) that (X, A) is a semi-canonical pair if X is the image of a metric space by a closed continuous map. It is also mentioned by M. Cauty [3] that, if X is a stratifiable space (cf. [2]), then any pair (X, A) is semi-canonical. However, quite recently S. San-ou [11] pointed out that Cauty's statement was false by constructing an M_1-space X (cf. [4]) such that (X, A) was not semi-canonical for some closed subset A of X.

The purpose of this paper is to discuss the semi-canonical property in the product space $X \times I$ of a T_1 space X with the unit closed interval I and to reduce it to a property in X.

Theorem 1. Let X be a T_1 space. Then $(X \times I, X \times \{0\})$ is a semi-canonical pair if and only if X is metrizable.

By Theorem 1 it can be easily seen that, if X is any nonmetrizable M_1-space, then $X \times I$ is an M_1-space such that $(X \times I, X \times \{0\})$ is never semi-canonical.

Received by the editors November 8, 1976 and, in revised form, April 3, 1977.

Key words and phrases. Semi-canonical cover, semi-canonical pair, M_1-space, metric space, compact-covering map, open map, X-base, countable character, first countable space.

© American Mathematical Society 1978
Theorem 2. Let X be a T_1 space. Then $(X \times I, K \times \{0\})$ is a semi-canonical pair for each compact subset K if and only if X is a regular space which is a compact-covering, open image of a metric space.

Theorem 3. Let X be a T_1 space. Then $(X \times I, \{(x, 0)\})$ is a semi-canonical pair for each point $x \in X$ if and only if X is a regular, first countable space.

Throughout this paper, the following notations will be used: X_0 and X_n denote the subspaces $X \times \{0\}$ and $X \times \{1/n\}$ of $X \times I$ for $n = 1, 2, \ldots$; π denotes the projection from $X \times I$ onto X; and I_n denotes the subspace $[0, 1/n]$ of I for $n = 1, 2, \ldots$.

All spaces in this paper are T_1, and all maps are continuous.

2. Proof of Theorem 1. The sufficiency of the condition is clear, since every pair (X, A) in a metric space X is semi-canonical (cf. [6]). To prove necessity, suppose that there exists a semi-canonical cover \mathcal{V} for $(X \times I, X_0)$. Put

$$\mathcal{V}_n = \pi(\mathcal{V}|X_n) = \{\pi(V \cap X_n) : V \in \mathcal{V}\}$$

for $n = 1, 2, \ldots$. Then $\{\mathcal{V}_n : n = 1, 2, \ldots\}$ is clearly a sequence of open covers of X.

Let us show that, for each point $x \in X$, the system $\{\text{St}(x, \mathcal{V}_n) : n = 1, 2, \ldots\}$ forms a neighborhood base at x, where $\text{St}(x, \mathcal{U})$ denotes the set $\text{St}(\text{St}(x, \mathcal{U}), \mathcal{U})$. Then X is metrizable by a theorem of K. Morita [10]. To complete the proof, let x be any point of X and G an arbitrary neighborhood of x in X. Since \mathcal{V} is a semi-canonical cover for $(X \times I, X_0)$, there exist a neighborhood H_1 of x in X and a positive integer m such that $\text{St}(H_1 \times I_m, \mathcal{V}) \subset G \times I$ holds. Again, for the neighborhood H_1 of x there exist a neighborhood H_2 of x in X and a positive integer n such that $n > m$ and $\text{St}(H_2 \times I_n, \mathcal{V}) \subset H_1 \times I$. Now, let us show $\text{St}(x, \mathcal{V}_n) \subset G$. Pick an arbitrary point y in $\text{St}(x, \mathcal{V}_n)$. Then there are two members U, U' of \mathcal{V}_n with $x \in U$, $y \in U'$ and $U \cap U' \neq \emptyset$. Let z be a point of $U \cup U'$. By the definition of \mathcal{V}_n there exist V, V' in \mathcal{V} such that

$$U = \pi(V \cap X_n) \quad \text{and} \quad U' = \pi(V' \cap X_n).$$

Hence, $(x, 1/n) \in V$, $(z, 1/n) \in V \cap V'$ and $(y, 1/n) \in V'$ hold. The first inclusion $(x, 1/n) \in V$ implies $V \subset H_1 \times I$, because $(x, 1/n)$ belongs to $H_2 \times I_n$; the second one implies $V' \subset G \times I$, because $(z, 1/n) \in V$ shows $(z, 1/n) \in H_1 \times I_n$ and $(z, 1/n) \in V'$ yields $V' \cap (H_1 \times I_n) \neq \emptyset$; and, as a consequence, the last inclusion $(y, 1/n) \in V'$ implies $y \in G$, which completes the proof.

3. Some lemmas.

Lemma 1. Let X be a space. If the pair $(X \times I, \{(x, 0)\})$ is semi-canonical for every point $x \in X$, then X is a regular space.

1 A continuous map $f : X \to Y$ is called compact-covering if every compact subset of Y is the image of some compact subset of X.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
Proof. Using the same notations as in the proof of Theorem 1, it has been shown that, for a given point x of X and an arbitrary neighborhood G of x, there exists an open cover \mathcal{U}_n of X such that $St^2(X, \mathcal{U}_n) \subset G$ holds. Clearly, $St(x, \mathcal{U}_n)$ is a neighborhood of x, whose closure is contained in $St^2(x, \mathcal{U}_n)$ and hence in G. This proves that X is a regular space.

If $A \subset X$, then an X-base for A is a collection \mathcal{U} of open subsets of X such that, if $x \in A$ and V is a neighborhood of x in X, then $x \in U \subset V$ for some $U \in \mathcal{U}$.

Lemma 2. Let X be a regular (T_1) space and K a compact subset of X. If there exists a countable X-base for K, then there exists an X-base $\bigcup_{n=1}^{\infty} \mathcal{P}_n$ for K such that

1. \mathcal{P}_n is a finite collection whose union covers K for $n = 1, 2, \ldots$,
2. $\{P: P \in \mathcal{P}_{n+1}\}$ refines \mathcal{P}_n for $n = 1, 2, \ldots$, and
3. for each point x of K and each neighborhood G of x in X, there exist a positive integer n and a neighborhood H of x in X such that $St(H, \mathcal{P}_n) \subset G$.

Proof. Let \mathcal{B} be the given countable X-base for K. Since $\mathcal{B}|K$ is a countable base for K itself, K is metrizable. Hence, for any subset E of K, the diameter $\delta(E)$ of E is well defined and also, for any cover \mathcal{S} of K, the mesh $\delta = \sup\{\delta(E); E \in \mathcal{S}\}$ is well defined.

For each n, let \mathcal{U}_n be a finite subcollection of \mathcal{B} such that

1. \mathcal{U}_n covers K, and
2. mesh $\mathcal{U}_n[K] < 1/2^n$.

Let $\{\mathcal{V}_n: n = 1, 2, \ldots\}$ be the set of all finite subcollections of \mathcal{B}, each of which forms a minimal cover with respect to K; that is, any proper subcollection of \mathcal{V}_n does not cover K for $n = 1, 2, \ldots$. Put $\mathcal{W}_1 = \mathcal{U}_1 \land \mathcal{V}_1$ ($= \{U \cap V: U \in \mathcal{U}_1, V \in \mathcal{V}_1\}$) and $\mathcal{W}_{n+1} = \mathcal{W}_n \land \mathcal{U}_{n+1} \land \mathcal{V}_{n+1}$ for $n = 1, 2, \ldots$. Then each \mathcal{W}_n is a finite collection of open subsets of X whose union covers K.

Next, by induction on n, let us construct a finite collection \mathcal{F}_n of closed subsets of K, a finite collection \mathcal{P}_n of open subsets of X and a function φ_n from \mathcal{F}_n onto \mathcal{P}_n such that the following conditions are satisfied:

1. \mathcal{F}_n is a closed cover of K which refines $\mathcal{W}_n \land \mathcal{P}_{n-1}$, where $\mathcal{P}_0 = \{X\}$,
2. \mathcal{P}_n refines $\mathcal{W}_n \land \mathcal{P}_{n-1}$,
3. if $F \in \mathcal{F}_n$, then $F \subset \mathcal{P}_n(F)$,
4. if $F \in \mathcal{F}_n$ and $F \subset 0 \in \bigcup_{i=1}^{n-1} \mathcal{P}_i \cup \bigcup_{i=1}^{n-1} (\mathcal{U}_i \cup \mathcal{V}_i)$, then $\varphi_n(F) = 0$,
5. and

Let $\mathcal{W}_1 = \{W_1, \ldots, W_k\}$. Since \mathcal{W}_1 covers K and K is normal, there exists a closed cover $\mathcal{F}_1 = \{F_1, \ldots, F_k\}$ of K such that $F_i \subset W_i$ for $i = 1, \ldots, k$.

Hence \mathcal{F}_1 satisfies condition (3). Since X is regular and \mathcal{F}_1 is a finite collection, each member of which is compact, and since \mathcal{U}_1 and \mathcal{V}_1 are also finite collections, it is easy to see that the function φ_1 and $\mathcal{P}_1 = \varphi_1(\mathcal{F}_1)$ are well defined to satisfy conditions (4)-(7), as well. The situation in each step
is the same as above, and thus \(\mathcal{P}_n \), \(\varphi_n \) and \(\mathcal{P}_n \) are all constructed quite similarly.

Now, it remains to show that the sequence \(\{ \mathcal{P}_n : n = 1, 2, \ldots \} \) is the required one in Lemma 2. Since \(\mathcal{P}_n \) is finite and satisfies (3) and (5), \(\mathcal{P}_n \) satisfies the condition (1). By (3) and (6), \(\mathcal{P}_n \) satisfies the condition (2). To prove that \(\{ \mathcal{P}_n : n = 1, 2, \ldots \} \) satisfies the condition (3), let \(x \) be any point of \(K \) and \(G \) an arbitrary neighborhood of \(x \) in \(X \). Since \(\mathcal{H} \) is an \(X \)-base for \(K \), there exists a \(B_0 \in \mathcal{H} \) such that \(x \in B_0 \subseteq G \).\(^2\) Let \(\mathcal{V} \) be a finite subcollection of \(\mathcal{H} \) which is a minimal cover with respect to \(K \) and which keeps \(B_0 \) as the only member of \(\mathcal{V} \) containing \(x \). Since \(K \) is a compact \(T_2 \) space and since \(\mathcal{H} \) is an \(X \)-base for \(K \), such \(\mathcal{V} \) certainly exists; further, for some \(n \), \(\mathcal{V} = \mathcal{V}_n \).

Let \(F_0 \in \mathcal{F}_n \) be a member with \(x \in F_0 \). Then \(F_0 \subseteq B_0 \) holds, because \(\mathcal{F}_n \) refines \(\mathcal{H}_0 \) which refines \(\mathcal{V}_n \) and \(B_0 \) is the only member of \(\mathcal{V} \) containing \(x \); and also, by (5) and (6), the inclusions \(F_0 \subseteq \varphi_n(F_0) \subseteq B_0 \) hold. Since \(\varphi_n(F_0) \) is an open set containing \(x \), there exists a positive integer \(m \) such that \(m > n \) and \(d(x, K - \varphi_n(F_0)) > 1/2^m \), where \(d \) denotes the metric function on \(K \). Since \(\mathcal{F}_{m+1} \) is a cover of \(K \) by (3)\(m+1 \), there exists an \(F_1 \in \mathcal{F}_{m+1} \) containing \(x \). To complete the proof, it suffices to show that

\[
\text{St}(\varphi_{m+1}(F_1), \mathcal{P}_{m+1}) \subseteq \varphi_n(F_0),
\]

because \(\varphi_{m+1}(F_1) \) is an open set in \(X \) containing \(x \) and \(\varphi_n(F_0) \) is contained in \(B_0 \), which is contained in \(G \). Let \(P \) be an arbitrary member of \(\mathcal{P}_{m+1} \) and \(F \) the corresponding member of \(\mathcal{F}_{m+1} \) by \(P = \varphi_{m+1}(F) \). If \(P \cap \varphi_{m+1}(F_1) \neq \emptyset \), then by (7)\(m+1 \), \(F \cap F_1 \neq \emptyset \). Since \(\mathcal{F}_{m+1} \) refines \(\mathcal{P}_m \) by (5)\(m+1 \) and \(\mathcal{P}_{m+1} \) refines \(\mathcal{H}_{m+1} \) by (4)\(m+1 \), and since \(\mathcal{H}_{m+1} \) refines \(\mathcal{P}_m \) whose mesh restricting to \(K \) is less than \(1/2^{m+1} \), the diameter \(\delta(F \cup F_1) \) is less than \(1/2^m \). Since \(x \) belongs to \(F_1 \), by the choice of \(m \), \(F \cup F_1 \subseteq \varphi_n(F_0) \) holds. Again by (6)\(m+1 \), \(\varphi_{m+1}(F) \subseteq \varphi_n(F_0) \) and thus \(P \subseteq \varphi_n(F_0) \) holds, which completes the proof.

Lemma 3. Let \(X \) be a regular \((T_1) \) space and \(K \) a compact subset of \(X \). If there exists a countable \(X \)-base for \(K \), then \((X, K) \) is a semi-canonical pair.

Proof. Let \(\bigcup_{n=1}^{\infty} \mathcal{P}_n \) be an \(X \)-base for \(K \) obtained by Lemma 2. For each \(n \), put \(G_n = \bigcup \{ P : P \in \mathcal{P}_n \} \). Then, by conditions (1) and (2) in Lemma 2, \(G_{n+1} \subseteq G_n \) for \(n = 1, 2, \ldots \) and \(K \subseteq \bigcap_{n=1}^{\infty} G_n \), and by condition (3) and by the fact that \(K \) is compact, it is easily seen that \(K = \bigcap_{n=1}^{\infty} G_n \).

Now, put \(\mathcal{V}_0 = \{ X - G_2 \} \) and \(\mathcal{V}_n = \mathcal{P}_n \{ G_n - G_{n+2} \} \) for \(n = 1, 2, \ldots \), and put \(\mathcal{V} = \bigcup_{n=1}^{\infty} \mathcal{V}_n \). Then it will be shown that \(\mathcal{V} \) is a semi-canonical cover for \((X, K) \). Clearly, \(\mathcal{V} \) is an open cover of \(X \) - \(K \). To complete the proof, let \(x \) be any point of \(K \) and \(U \) an arbitrary neighborhood of \(x \) in \(X \). By condition (3) in Lemma 2, there exist a positive integer \(n \) and a neighborhood \(H \) of \(x \) in \(X \) such that \(\text{St}(H, \mathcal{P}_n) \subseteq U \). Put \(W = H \cap G_{n+1} \). Then \(W \) is a neighborhood of \(x \) in \(X \) such that \(W \cap V = \emptyset \) for each \(V \in \bigcup_{n=1}^{\infty} \mathcal{V}_n \).

\(^2\) If \(K \) is singleton, then \(\bigcup_{n=1}^{\infty} \mathcal{P}_n \) is easily chosen from the given countable \(X \)-base for \(K \), because \(X \) is regular. So, assuming that \(K \) is not a singleton, \(B_0 \) is picked out from \(\mathcal{H} \) such that \(K - B_0 \neq \emptyset \).
Therefore

\[\text{St}(W, \mathcal{V}) = \text{St}(W, \bigcup_{i \geq n} \mathcal{V}_i) \subset \text{St}(W, \bigcup_{i \geq n} \mathcal{P}_i) \subset \text{St}(H, \mathcal{P}_n) \subset U \]

by condition (2) in Lemma 2, and that completes the proof.

4. Proofs of Theorems 2 and 3. The following characterization of the compact-covering open images of metric spaces, due to E. Michael and K. Nagami [9] will be used in the proof of Theorem 2.

Theorem M-N (E. Michael and K. Nagami). For a \(T_2 \) space \(X \), the following conditions are equivalent:

1. \(X \) is the compact-covering open image of a metric space.
2. Every compact subset of \(X \) is metrizable and of countable character in \(X \).
3. Every compact subset of \(X \) has a countable \(X \)-base.

Proof of Theorem 2. Necessity. Let \((X \times I, K \times \{0\})\) be a semi-canonical pair for any compact subset \(K \) of \(X \). Then \(X \) is a regular space by Lemma 1 putting \(K \) in the assumption a singleton. Next, it will be shown that each compact subset \(K \) of \(X \) has a countable \(X \)-base. Then \(X \) is the compact-covering open image of a metric space by Theorem M-N.

To complete the proof, let \(K \) be a compact subset of \(X \). By the assumption, there exists a semi-canonical cover \(\mathcal{V} \) for \((X \times I, K \times \{0\})\). Put \(\mathcal{V}_n \) the finite subcollection of \(\mathcal{V} \) which covers \(K \times \{1/n\} \), and put \(\mathcal{U}_n = \pi(\mathcal{V}_n | X_n) \) for \(n = 1, 2, \ldots \).

Then it is easy to show that the collection \(\bigcup_{n=1}^{\infty} \mathcal{U}_n \) is the required \(X \)-base for \(K \), by the same technique as in the proof of Theorem 1.

Sufficiency. It is easy to check that, if \(X \) is the compact-covering open image of a metric space, then so is \(X \times I \). Hence, for any compact subset \(K \) of \(X \), \(K \times \{0\} \) has a countable \(X \times I \)-base by Theorem M-N, and thus \((X \times I, K \times \{0\})\) is a semi-canonical pair by Lemma 3, which completes the proof.

Proof of Theorem 3. Necessity. By Lemma 1, \(X \) is a regular space. The first countability of \(X \) is proved by the same technique as in the proof of the necessity in Theorem 2, replacing \(K \) by a singleton.

Sufficiency. If \(X \) is a regular \((T_1) \) first countable space, then so is \(X \times I \). In general, it is easily seen that, in any regular \((T_1) \) first countable space \(Y \), the pair \((Y, \{y\})\) is always semi-canonical for each point \(y \in Y \). This completes the proof.

5. Comments. 1. From the proofs of Theorems 1, 2 and 3, it is easy to see that, in the conditions of these theorems, the closed interval \(I \) may be
replaced by any space containing a convergent sequence. By such replace-
ment in Theorem 1, one obtains a slight modification of the proof of the
following theorem due to D. M. Hyman [7], remembering two facts: (1) The
closed image of a metric space is a Fréchet-Urysohn space (cf. [8]); and (2)
any pair \((X, A)\) is semi-canonical if \(X\) is the closed image of a metric space
(cf. [7]).

Theorem (D. Hyman). If \(X \text{ and } Y\) are nondiscrete spaces and if \(X \times Y\) is
the closed image of a metric space, then \(X \text{ and } Y\) are metrizable.

2. The semi-canonical property need not be two-productive. For example,
let \(X = N \cup \{p\}\) be a subspace of Stone-Cech compactification \(\beta N\) of \(N\)
\((= \{1, 2, \ldots \})\) with \(p \in \beta N - N\). Then it is well known that \(X\) is not first
countable at \(p\), and thus \((X \times I, \{(p, 0)\})\) is not semi-canonical by Theorem
3. However, it is easy to see that any pair \((X, A)\) is always semi-canonical.

This example also shows that, in the conditions of Theorems 1 and 2,
\(X \times I\) cannot be replaced by \(X\). Clearly, then, the semi-canonical property in
\(X\) is very different from the semi-canonical property in \(X \times I\).

References

 Mat. Meh. 22 (1967), no. 6, 87–93.
 23 (1967), 263–271.
 109–112.
 Soc. 37 (1973), 260–266.
 Acad. 27 (1951), 632–636.

Department of Mathematics, Osaka Kyoiku University, Tennoji, Osaka, Japan

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use