A generalized Kleene-Moschovakis theorem

Authors:
Leo Harrington, Lefteris Kirousis and John Schlipf

Journal:
Proc. Amer. Math. Soc. **68** (1978), 209-213

MSC:
Primary 02F27

MathSciNet review:
0476457

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Moschovakis generalized a theorem of Kleene to prove that if is a collection of subsets of any acceptable structure such that comprehension, every hyperelementary subset of is in . We prove an analogous result for arbitrary . We also get analogous results for with an extra quantifier *Q*.

**[75]**Jon Barwise,*Admissible sets and structures*, Springer-Verlag, Berlin-New York, 1975. An approach to definability theory; Perspectives in Mathematical Logic. MR**0424560****[76]***Admissible sets and monotone quantifiers*, Lecture notes, U.C.L.A., spring 1976 (unpublished).**[71]**K. J. Barwise, R. O. Gandy, and Y. N. Moschovakis,*The next admissible set*, J. Symbolic Logic**36**(1971), 108–120. MR**0300876****[76]**Jon Barwise and John Schlipf,*On recursively saturated models of arithmetic*, Model theory and algebra (A memorial tribute to Abraham Robinson), Springer, Berlin, 1975, pp. 42–55. Lecture Notes in Math., Vol. 498. MR**0409172****[74]**Y. N. Moschovakis,*Analytical definability in a playful universe*, Logic, methodology and philosophy of science, IV (Proc. Fourth Internat. Congr., Bucharest, 1971) North-Holland, Amsterdam, 1973, pp. 77–85. Studies in Logic and Foundations of Math., Vol. 74. MR**0540769**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
02F27

Retrieve articles in all journals with MSC: 02F27

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0476457-5

Keywords:
Admissible set,
weakly *Q*-admissible set,
strongly *Q*-admissible set,
hyperelementary,
*Q*-hyperelementary,
deterministic-*Q*-hyperelementary,
comprehension,
nonacceptable structure

Article copyright:
© Copyright 1978
American Mathematical Society