Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Uniform asymptotic stability in functional differential equations

Author: T. A. Burton
Journal: Proc. Amer. Math. Soc. 68 (1978), 195-199
MSC: Primary 34K20
MathSciNet review: 0481371
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The classical uniform asymptotic stability result for a system of functional differential equations

$\displaystyle x' = F(t,{x_t})$ ($ 1$)

calls for a Liapunov functional $ V(t,\phi )$ satisfying $ W(\vert\phi (0)\vert) \leqslant V(t,\phi ) \leqslant {W_1}(\vert\phi (0)\vert)... ...vert\vert\phi \vert\vert\vert),{V'_{(1)}} \leqslant - {W_3}(\vert\phi (0)\vert)$, and $ \vert f(t,{x_t})\vert$ bounded for $ \vert\vert\vert{x_t}\vert\vert\vert$ bounded. We show that it is not necessary to require $ \vert f(t,{x_t})\vert$ bounded. Here, $ \vert\vert\vert \cdot \vert\vert\vert$ is the $ {L^2}$-norm.

References [Enhancements On Off] (What's this?)

  • [1] Taro Yoshizawa, Stability theory by Liapunov’s second method, Publications of the Mathematical Society of Japan, No. 9, The Mathematical Society of Japan, Tokyo, 1966. MR 0208086

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 34K20

Retrieve articles in all journals with MSC: 34K20

Additional Information

Keywords: Functional differential equations, Liapunov functionals, uniform asymptotic stability
Article copyright: © Copyright 1978 American Mathematical Society