A SHORT PROOF OF THE DAWKINS-HALPERIN THEOREM

DAVID HANDELMAN

Abstract. A brief proof is presented, of the Dawkins-Halperin Theorem, that if D is a finite dimensional division algebra with centre F, then the direct limits of appropriately-sized matrix rings over D and F are isomorphic; the isomorphism can be given in a form suitable for comparing cohomology groups of D and F.

For a ring R, we denote the ring of t by t matrices with entries from R, by $M_t R$. There is an obvious map from R to $M_t R$:

$$\Delta(t): R \to M_t R, \quad r \mapsto \begin{bmatrix} r & & & \cr & r & & \\
& & \ddots & \\
& & & r
\end{bmatrix}. $$

Let D denote a division ring of dimension n^2 over its centre F. The main result of [1], asserts that if $t = n^2$, then as F-algebras

$$\lim_{i \to \infty} M_i D \simeq \lim_{i \to \infty} M_i F;$$

the maps in both limits being $\Delta(t)$. However, the proof there is exceptionally obscure and complicated. We give a short natural proof, requiring only the Noether-Skolem Theorem:

[3, Theorem 4.3.1]. Let C be a finite dimensional simple F-algebra with centre F, and let A, B be simple subalgebras of C, each with centre F. Then any F-algebra isomorphism from A to B can be extended to an inner automorphism of C.

Theorem. Let D be a division algebra of dimension n^2 over its centre, the field F. Set $t = n^2$, and for each positive integer i, let j_i denote the map $M_{j_i} F \subset M_i D$ induced by the inclusion of F in D. Form the F-algebras $\lim_{i \to \infty} M_i F, \lim_{i \to \infty} M_i D$, with $\Delta(t)$ as the maps in the limits.

There exist inner automorphisms ψ_i, ϕ_i of $M_i D, M_i F$ respectively, so that if $\alpha_i: M_i F \to M_i D$ are defined by $\alpha_i = \psi_i^{-1} j_i \phi_i$, then the α_i are compatible with the maps in the direct limits, and the induced map

$$\lim_{i \to \infty} \alpha_i: \lim_{i \to \infty} M_i F \to \lim_{i \to \infty} M_i D$$

is an F-algebra isomorphism.

Received by the editors May 31, 1977.

Let $k: D \to M_i F$ be a fixed F-algebra homomorphism (for instance, the right regular representation of D), and define maps $k_j: M_j D \to M_{i+1} F$ to be the maps on the matrix rings induced by k. We may form the limit, S, of the diagram (1):

$$
\begin{array}{ccccccc}
F & \to & D & \to & M_i F & \to & M_i D & \to & M_i F^j & \to & \ldots \\
& k & \downarrow & j_1 & \downarrow & j_2 & \downarrow & \ldots & \downarrow & \downarrow & \ldots \\
\end{array}
$$

Then S is algebra isomorphic to $\lim_{i \to \infty} M_i F$.

Proof. Pick a fixed map k, such as the right regular representation, and separate (1) into two rows, rows 2 and 3 of diagram (2).

$$
\begin{array}{ccccccc}
\cdots & \to & M_i F & \to & M_{i+1} F & \to & M_{i+2} F & \to & \cdots \\
& \downarrow & k_{i+1} & \downarrow & j_{i+1} & \downarrow & \cdots \\
\cdots & \to & M_i D & \to & M_{i+1} D & \to & M_{i+2} D & \to & \cdots \\
\end{array}
$$

Because $M_i F$ and $M_i D$ are cofinal in diagram (1), $\lim j_i$ is actually an isomorphism (with inverse, $\lim k_i$) from the limit of row 2 to the limit of row 3. We shall construct inner $\phi_i: M_i F \to M_i F$ (row 1 to row 2) and $\psi_i: M_i D \to M_i D$ (row 4 to row 3) so that the whole of (2) commutes.

Define $\psi_0: D \to D$ to be the identity map. Assuming ψ_s have been defined for $0 < s < i$, so that rows 3 and 4 commute, we see

As F-subalgebras of $M_i D$, the isomorphism obtained by pulling back the image of Δ, and applying $j_{i+1} k_i \psi_i$. By the Noether-Skolem Theorem, there exists an invertible V in $M_{i+1} D$ so that this isomorphism is implemented by conjugation with V. Define $\psi_{i+1}(A) = V A V^{-1}$; then $\psi_{i+1} \Delta = j_{i+1} k_i \psi_i$, concluding the induction.

Thus $\lim \psi_i$ defines a map between the limits of the fourth and third rows; it follows that $\lim \psi_i^{-1}$ (from row 3 to row 4) exists and is the inverse. In particular, $\lim \psi_i^{-1}$ is an algebra isomorphism.

The same process allows us to construct a similar isomorphism, $\lim \phi_i$, from the limit of row 1 to the limit of row 2, with each ϕ_i inner. Since $\lim j_i$ is an isomorphism, and

$$
\lim(\psi_i^{-1} j_i \phi_i) = (\lim \psi_i^{-1})(\lim j_i)(\lim \phi_i),
$$

setting $\alpha_i = \psi_i^{-1} j_i \phi_i$ (mapping down the columns of (2)), we see that $\lim \alpha_i$ is an isomorphism, and the final statement is an immediate consequence.

The form of the isomorphism obtained above is particularly useful in computing the homology or cohomology of D relative to that of F (see [2], for

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
an application), because such functors usually commute with direct limits, and change inner automorphisms into the identity.

Theorem 2 of [1] effectively asserts that if a division ring D can be represented as a limit, $\lim D_i$, with each D_i a finite dimensional central division algebra over F, then

$$\lim_{\Delta(m)} M_n F \simeq \lim_{\Delta(m)} M_n D,$$

where m varies over all products of numbers of the form $[D_i: F]$, and n varies similarly. (Of course, $\Delta(m): M_n F \to M_n F$ is defined only if $r = mn$.) One can easily prove that this follows from our theorem above.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH, SALT LAKE CITY, UTAH 84112

Current address: Department of Mathematics, University of Ottawa, Ottawa, Ontario, Canada K1N 6N5