Some ``almost-Dowker'' spaces

Author:
Brian M. Scott

Journal:
Proc. Amer. Math. Soc. **68** (1978), 359-364

MSC:
Primary 54D15

MathSciNet review:
0467668

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Call *X* an AD-space (for ``almost-Dowker") if it is but not countably metacompact. We construct, without set-theoretic assumptions, a class of zero-dimensional, orthocompact, nonnormal AD-spaces. Using the same techniques, we simplify an example due to Hayashi by showing that if , (e.g., if the continuum hypothesis holds), the ``Cantor tree of height '' is also such a space.

Since is orthocompact iff *X* is orthocompact and countably metacompact, we now have ``absolute'' examples of orthocompact Tikhonov spaces whose products with [0, 1] are not orthocompact.

**[1]**C. H. Dowker,*On countably paracompact spaces*, Canadian J. Math.**3**(1951), 219–224. MR**0043446****[2]**William G. Fleissner,*On 𝜆 collection Hausdorff spaces*, Proceedings of the 1977 Topology Conference (Louisiana State Univ., Baton Rouge, La., 1977), II, 1977, pp. 445–456 (1978). MR**540621****[3]**Y. Hayashi,*A regular space which is not countably metacompact*, Mem. Kōnan Univ. Sci. Ser.**10**(1967), 31-43.**[4]**R. B. Jensen,*Souslin's hypothesis is incompatible with*, Notices Amer. Math. Soc.**15**(1968), p. 935.**[5]**P. Nyikos and H. C. Reichel,*On the structure of zero-dimensional spaces*(preprint).**[6]**Mary Ellen Rudin,*Countable paracompactness and Souslin’s problem*, Canad. J. Math.**7**(1955), 543–547. MR**0073155****[7]**Mary Ellen Rudin,*A normal space 𝑋 for which 𝑋×𝐼 is not normal*, Fund. Math.**73**(1971/72), no. 2, 179–186. MR**0293583****[8]**-,*A first-countable Dowker space of cardinality*(preprint).**[9]**Brian M. Scott,*Toward a product theory for orthocompactness*, Studies in topology (Proc. Conf., Univ. North Carolina, Charlotte, N.C., 1974; dedicated to Math. Sect Polish Acad. Sci.), Academic Press, New York, 1975, pp. 517–537. MR**0372820****[10]**R. M. Solovay and S. Tennenbaum,*Iterated Cohen extensions and Souslin’s problem*, Ann. of Math. (2)**94**(1971), 201–245. MR**0294139****[11]**S. Ulam,*Zur Masstheorie in der allgemeinen Mengenlehre*, Fund. Math.**16**(1930), 140-150.

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
54D15

Retrieve articles in all journals with MSC: 54D15

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0467668-3

Keywords:
Dowker space,
orthocompact,
countably metacompact

Article copyright:
© Copyright 1978
American Mathematical Society