On functions subharmonic in a Lipschitz domain

Author:
Jang-Mei Gloria Wu

Journal:
Proc. Amer. Math. Soc. **68** (1978), 309-316

MSC:
Primary 31B25

DOI:
https://doi.org/10.1090/S0002-9939-1978-0470234-7

MathSciNet review:
0470234

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let *D* be a starlike Lipschitz domain in . If *w* is a subharmonic function in *D* with positive harmonic majorant, then at almost every point on the boundary of *D* (surface measure), *w* has radial limit. Results on limits along certain curves in general Lipschitz domains are also obtained.

**[1]**B. Dahlberg,*On estimates of harmonic measure*, Arch. Rational Mech. Anal.**65**(1977), 275-288. MR**0466593 (57:6470)****[2]**J. R. Diederich,*Natural limits for harmonic and superharmonic functions*, Trans. Amer. Math. Soc.**224**(1976), 381-397. MR**0419796 (54:7814)****[3]**L. L. Helms,*Introduction to potential theory*, Wiley, New York, 1969. MR**0261018 (41:5638)****[4]**R. A. Hunt and R. L. Wheeden,*On the boundary values of harmonic functions*, Trans. Amer. Math. Soc.**132**(1968), 307-322. MR**0226044 (37:1634)****[5]**O. D. Kellogg,*On the derivatives of harmonic functions on the boundary*, Trans. Amer. Math. Soc.**33**(1931), 486-510. MR**1501602****[6]**J. E. Littlewood,*On functions subharmonic in a circle*. II, Proc. London Math. Soc. (2)**28**(1928), 383-394.**[7]**M. L. Silverstein and R. L. Wheeden,*Superharmonic functions on Lipschitz domains*, Studia Math.**39**(1971), 191-198. MR**0315150 (47:3699)****[8]**J.-M. Wu,*Boundary limits of Green's potentials along curves*, Studia Math.**60**(1976), 137-144.**[9]**-,*Boundary limits of Green's potentials along curves*. II.*Lipschitz domains*, Studia Math. (to appear).

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
31B25

Retrieve articles in all journals with MSC: 31B25

Additional Information

DOI:
https://doi.org/10.1090/S0002-9939-1978-0470234-7

Keywords:
Subharmonic,
Green's potential,
harmonic measure,
Lipschitz domain,
limits along curves,
Harnack's inequality,
maximum principle

Article copyright:
© Copyright 1978
American Mathematical Society