Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

A generalization of von Neumann's inequality to the complex ball


Author: S. W. Drury
Journal: Proc. Amer. Math. Soc. 68 (1978), 300-304
MSC: Primary 47A30
DOI: https://doi.org/10.1090/S0002-9939-1978-0480362-8
MathSciNet review: 480362
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A necessary and sufficient condition is found for a polynomial Q of J variables to be such that $ Q({A_1}, \ldots ,{A_J})$ is a contraction whenever $ {A_j}(1 \leqslant j \leqslant J)$ are commuting linear operators on complex hilbert space satisfying $ \Sigma _{j = 1}^JA_j^ \ast {A_j} \leqslant I$.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A30

Retrieve articles in all journals with MSC: 47A30


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0480362-8
Keywords: Functional calculus, operators on hilbert space
Article copyright: © Copyright 1978 American Mathematical Society