Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



The additive structure of models of arithmetic

Authors: Leonard Lipshitz and Mark Nadel
Journal: Proc. Amer. Math. Soc. 68 (1978), 331-336
MSC: Primary 02H20
MathSciNet review: 0491158
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that for a model of Presburger arithmetic to have an expansion to a model of Peano arithmetic it is necessary that the model be recursively saturated. For countable models this condition is also sufficient; for uncountable models it is not.

References [Enhancements On Off] (What's this?)

  • [1] K. J. Barwise, Admissible sets and structures, Springer-Verlag, Berlin and New York, 1975. MR 0424560 (54:12519)
  • [2] K. J. Barwise and John Schlipf, An introduction to recursively saturated and resplendent models, J. Symbolic Logic 41 (1976), 531-536. MR 0403952 (53:7761)
  • [3] -, On recursively saturated models of arithmetic, Lecture Notes in Math., no. 498, Springer-Verlag, Berlin, 1975. MR 0409172 (53:12934)
  • [4] Solomon Feferman and R. L. Vaught, The first order properties of products of algebraic systems, Fund. Math. 47 (1959), 57-103. MR 0108455 (21:7171)
  • [5] M. Presburger, Über die Vollständigkeit eines gewissen Systems der Arithmetik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Comptes-rendus du I congrès des mathématiciens der pays slaves, Warsaw, 1929, pp. 92-101.
  • [6] H. J. Keisler, Model theory for infinitary logic, North-Holland, Amsterdam, 1971. MR 0344115 (49:8855)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 02H20

Retrieve articles in all journals with MSC: 02H20

Additional Information

Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society