Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Approximability of the inverse of an operator

Author: Avraham Feintuch
Journal: Proc. Amer. Math. Soc. 69 (1978), 109-110
MSC: Primary 47A50; Secondary 47C05
MathSciNet review: 0461178
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let A be an invertible operator on a complex Hilbert space $ \mathcal{H}$. A necessary and sufficient condition is given for $ {A^{ - 1}}$ to be a weak limit of polynomials in A.

References [Enhancements On Off] (What's this?)

  • [1] A Devinatz and M. Shinbrot, General Wiener-Hopf operators, Trans. Amer. Math. Soc. 145 (1969), 467-494. MR 0251573 (40:4800)
  • [2] A. Feintuch, On invertible operators and invariant subspaces, Proc. Amer. Math. Soc. 45 (1974), 123-126. MR 0331082 (48:9416)
  • [3] -, Algebras generated by invertible operators, Proc. Amer. Math. Soc. 63 (1977), 66-68. MR 0435929 (55:8880)
  • [4] R. G. Douglas, Banach algebra techniques in operator theory, Academic Press, New York and London, 1972. MR 0361893 (50:14335)
  • [5] H. Radjavi and P. Rosenthal, Invariant subspaces, Springer-Verlag, Berlin, Heidelberg, New York, 1973. MR 0367682 (51:3924)

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 47A50, 47C05

Retrieve articles in all journals with MSC: 47A50, 47C05

Additional Information

Keywords: Invertible operator, weakly closed algebra, strict positivity, numerical range
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society