Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)

 

 

Bounded sets in inductive limits


Authors: J. Kučera and K. McKennon
Journal: Proc. Amer. Math. Soc. 69 (1978), 62-64
MSC: Primary 46M10; Secondary 46A05
DOI: https://doi.org/10.1090/S0002-9939-1978-0463937-1
MathSciNet review: 0463937
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The Dieudonné-Schwartz theorem for bounded sets in strict inductive limits does not hold for general inductive limits. A set B bounded in an inductive limit $ E = {\operatorname{ind}}\;\lim {E_n}$ of locally convex spaces may not be contained in any $ {E_n}$. If, however, each $ {E_n}$ is closed in E, then B is contained in some $ {E_n}$, but may not be bounded there.


References [Enhancements On Off] (What's this?)

  • [1] Jean Dieudonné and Laurent Schwartz, La dualité dans les espaces ℱ et (ℒℱ), Ann. Inst. Fourier Grenoble 1 (1949), 61–101 (1950) (French). MR 0038553
  • [2] John Horváth, Topological vector spaces and distributions. Vol. I, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1966. MR 0205028
  • [3] J. L. Kelley and Isaac Namioka, Linear topological spaces, With the collaboration of W. F. Donoghue, Jr., Kenneth R. Lucas, B. J. Pettis, Ebbe Thue Poulsen, G. Baley Price, Wendy Robertson, W. R. Scott, Kennan T. Smith. The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J., 1963. MR 0166578

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 46M10, 46A05

Retrieve articles in all journals with MSC: 46M10, 46A05


Additional Information

DOI: https://doi.org/10.1090/S0002-9939-1978-0463937-1
Keywords: Locally convex space, inductive limit, bounded set, finest locally convex topology
Article copyright: © Copyright 1978 American Mathematical Society